Exam 3

- This exam is open book and open notes. You are not allowed to use any electronic devices besides a calculator.
- You have 2 hours to complete this exam (unless Disability Services has authorized a request for extended time: 50% extra time is 3 hours, 100% extra time is 4 hours). Good luck!

Problem 1: Let $A>0$ be constant. Consider a quantum particle in one dimension with wave function

$$
\Psi(x)= \begin{cases}A & 0<x<L \tag{1}\\ 2 A & L<x<3 L \\ 0 & \text { otherwise }\end{cases}
$$

1.1. Fix the constant A by demanding the wave function is normalized.
1.2. What is the probability that we measure x in the domain $2 L<x<3 L$?

15
Problem 2: In a universe where the "electron" had spin- $\frac{3}{2}$ instead of spin- $\frac{1}{2}$, how many protons would you expect in the nucleus of the first two "noble gases"? In a noble gas atom, all allowed states at a fixed single particle energy level are occupied by the "electron". Assume that (besides spin) the allowed quantum states for particle in a Coulomb potential are unchanged. Be sure to justify your answer!

Problem 3: Consider a toy model for an "atom" which consists of two particles of equal mass m, spinning around each other in circular orbits, and connected by a "rope" of variable length ℓ but constant tension T. Assume the particles spin around their midpoint, and move in the $x y$-plane.

3A: Let's solve the classical dynamics of this system.
3A.1. Using Newton's Second Law, relate the velocity of each particle to ℓ, m and T.
3A.2. Show that the total energy of the system is ${ }^{1} E=\frac{3}{2} T \ell$.
3A.3. Write the (magnitude of the) angular momentum L_{z} in terms of energy E. Show that

$$
\begin{equation*}
L_{z}=\sqrt{\frac{4 m}{27 T^{2}} E^{3}} \tag{2}
\end{equation*}
$$

3B: Let's now estimate the quantum behavior of this system.
3B.1. Using Bohr's quantization argument for angular momentum L_{z} (not the exact quantization we later described), estimate the allowed energy levels. As in Bohr's model, assume no states have $L_{z}=0$.
3B.2. If the angular momentum L_{z} can only change by $\pm \hbar$ when this "atom" emits or absorbs a photon, what photon wavelengths can be emitted/absorbed by this system?

[^0]Problem 4: Consider a two-dimensional "infinite well" in which a quantum particle of mass m is constrained to lie in the domain $0 \leq x \leq L$ and $0 \leq y \leq 3 L$. There is no potential energy in the well.

5C: We can estimate E_{*} using what we know about atomic physics.
5C.1. If E_{*} is related to the binding energy of the electron to a carbon atom, estimate how E_{*} should scale with a, b, \hbar and m. (Think about what E_{*} would be if the atom was hydrogen!)
5C.2. Note that $b \ll a$. Would you expect the low energy motion of the electron to be primarily rotational, or in the radial direction?

10 Problem 6 (Ionization): Consider a toy model for an atom in which the electron of mass m and charge $-e$ lives in one dimension. The atom is represented by an unknown potential $U(x)$, which tends to 0 as $|x| \rightarrow \infty$, and which admits a local bound state where the electron has an energy of $E=-\varphi$ (here $\varphi>0$ is positive). If a weak electric field of strength \mathcal{E} is applied, then we observe that after waiting a typical time scale $t_{\text {ionize }}$, the electron is ripped off from the atom by the field. This process is called ionization.

Using the basic theory of quantum mechanics which we have developed, argue that for small \mathcal{E},

$$
\begin{equation*}
t_{\text {ionize }} \sim \mathrm{e}^{\mathcal{E}_{*} / \mathcal{E}} \tag{6}
\end{equation*}
$$

and estimate \mathcal{E}_{*} in terms of m, \hbar, e and φ. Don't worry about factors of $2, \pi$, etc., in your answer; but, do carefully explain the \mathcal{E}-dependence in (6).

[^0]: ${ }^{1}$ Hint: Be careful - there are two particles in motion here! What is the potential energy stored in the rope?

