Homework 4

Due: September 23 at 11:59 PM. Submit on Canvas.

Problem 1 (Solar sail): One proposal for how to achieve interstellar travel is to use a "solar sail". Analogous to how a sailboat uses a giant cloth sail to generate mechanical forces due to the wind, a solar sail would rely on forces due to pressure from electromagnetic radiaton - i.e. light from the sun.

1A: Let's first estimate the mechanical forces on our solar sail from our sun.
1A.1. Consider a photon of energy E which approaches our solar sail at rest, and "head on". If the photon is reflected at 180° and has energy E when reflected, what is the momentum that is imparted into the solar sail? ${ }^{1}$
1A.2. Suppose that the intensity of solar radiation on the solar sail is I. Intensity has units of power per unit area - namely $\mathrm{W} / \mathrm{m}^{2}$ in SI units. If each photon carries exactly energy E, and travels in the same direction, show that the number of photons hitting an object of (perpendicular) cross-sectional area A in time τ is

$$
\begin{equation*}
N=A \tau \frac{I}{E} \tag{1}
\end{equation*}
$$

1A.3. By using Newton's Second Law that $F=\mathrm{d} p / \mathrm{d} t$, along with Newton's Third Law, conclude that there is a force on a solar sail of area A of magnitude:

$$
\begin{equation*}
F=\frac{2 I A}{c} . \tag{2}
\end{equation*}
$$

1B: Now, let's use Newton's Second Law to estimate how rapidly a solar sail can get our spaceship moving. Approximate that the solar sail moves at velocities $v \ll c$ (which you will justify later).

1B.1. Suppose the spaceship starts at rest. What is the acceleration of the ship? After applying (2), you may use non-relativistic mechanics for the remainder of the problem.
1B.2. If we want to travel a distance D at constant acceleration a, how long does it take?
1B.3. What is our instantaneous velocity when we travel a distance D ?
1B.4. Suppose that the spaceship has mass $m \approx 10^{5} \mathrm{~kg}$ (it can carry a few humans, food, supplies etc.). The intensity of solar radiation in outer space is $I \approx 1000 \mathrm{~W} / \mathrm{m}^{2}$. Suppose that the solar sail is pretty large, and is a square of side length $L=100 \mathrm{~m}$. We want to make it to Alpha Centauri, which is $\sim 10^{16} \mathrm{~m}$ away. How long will the journey take? Is this a reasonable strategy for human interstellar travel?
1B.5. Justify the use of non-relativistic mechanics in this calculation. ${ }^{2}$

[^0]Problem 2 (Nuclear chain reaction): A toy model for a (runaway) nuclear reaction is as follows: particle X is stable, but has an excited state X^{\prime}, accessible when a neutron collides with X , which is unstable and decays into Y along with 2 neutrons:

$$
\mathrm{X}+\mathrm{n} \rightarrow \mathrm{X}^{\prime} \rightarrow \mathrm{Y}+\mathrm{n}+\mathrm{n} .
$$

Let m_{X} denote the mass of X ; use similar subscript notation for other masses.

2A: Let's first begin by thinking about this decay process.
2A.1. Explain why we need

$$
\begin{equation*}
m_{\mathrm{X}^{\prime}} \geq 2 m_{\mathrm{n}}+m_{\mathrm{Y}} \tag{3}
\end{equation*}
$$

2A.2. If the X^{\prime} particle moves very fast, it should have enough total energy to decay into the desired particles even if the X^{\prime} mass does not obey (3). Explain why, even if the X^{\prime} does move very fast, the decay process requires (3).

2B: Assume the X^{\prime} decay process is possible. Argue that if the neutrons carry away the most energy possible (in $\mathrm{X}^{\prime \prime}$'s rest frame), then each neutron (in this frame) will be traveling at speed

$$
\begin{equation*}
v=c \sqrt{1-\left(\frac{2 m_{\mathrm{n}}}{m_{\mathrm{X}^{\prime}}-m_{\mathrm{Y}}}\right)^{2}} . \tag{4}
\end{equation*}
$$

2C: For this to drive a nuclear chain reaction, we now need to analyze the reaction where X absorbs a neutron. It would be desirable if the energetic neutron from the decay of X^{\prime} is energetic enough to push X into its excited state.

2C.1. In terms of the masses of the relevant particles, and c, find the critical velocity v_{*} at which it is possible for a neutron to collide with an X at rest, and create an X^{\prime}.
2C.2. Given a lump of matter full of X nuclei, give a qualitative argument why a "nuclear chain reaction" is possible if $v_{*}<v .{ }^{3}$

In reality, our model of the X^{\prime} state as difficult to create (requiring an energetic neutron) makes it undesirable for an actual nuclear reactor - one typically works with more unstable nuclei that can absorb low energy neutrons. Nevertheless, you should get a qualitative picture for how energy and mass get converted in nuclear reactions.

[^1]Problem 3 (Ultra high energy cosmic rays): There is a theoretical upper limit called the Greisen-Zatsepin-Kuzmin limit on the energy of particles in cosmic rays. This upper limit can be estimated as follows. Firstly, we assume that the cosmic rays consist of protons of mass $m \approx 900 \mathrm{MeV} / c^{2}-\mathrm{a}$ theoretical assumption not always born out in practice, but reasonable for this problem. Secondly, in the Earth's reference frame S, the universe is filled with cosmic microwave background (CMB) radiation: photons of typical energy $E_{\mathrm{CMB}} \approx 2 \times 10^{-10} \mathrm{MeV}$, moving both left and right in the x-direction (we do not need to consider the y and z directions in this problem). Thirdly, we assume the following process is allowed by particle physics: $\mathrm{p}+\gamma \rightarrow \mathrm{p}+\pi+\pi$, where π denotes a pion of (approximate) mass $\frac{1}{6} m .^{4}$

Suppose that we have a very fast moving proton, traveling in the x-direction at speed $v=\beta c$. Let S^{\prime} denote a reference frame in which this proton is at rest.
3.1. Using Lorentz transformations on the energy and momentum of a photon, estimate the largest possible energy $E_{\text {max }}$ of the CMB photons in frame S^{\prime}; express your answer in terms of β and E_{CMB}.
3.2. In frame S^{\prime}, consider the scattering process where the proton absorbs a photon. Explain why it is not possible to create pions unless $E_{\max }>\frac{1}{3} m c^{2}$.
3.3. Argue that it would be possible to create pions if $E_{\max }=\frac{7}{18} m c^{2} .{ }^{5}$
3.4. If the proton is moving so fast that it sees CMB photons of energy $E_{\text {max }}$, it will generally be slowed down by collisions with CMB photons, until the CMB photons have energies below $E_{\max }$ in the proton's rest frame. Using your answers above, and the numbers from the problem description, estimate the maximal energy of a proton in a cosmic ray.

15 Problem 4 (Accelerating particle): Suppose we have a particle of mass m and charge q, placed in a uniform electric field of strength E. Taking into account relativity, what will be the dynamics of the particle? It turns out that $F=q E$ still holds in relativity: namely, this particle will experience a constant force.
4.1. Solve for the trajectory of the particle, assuming that it starts from rest at $x(t=0)=0$. Show that

$$
\begin{equation*}
x(t)=\frac{m c^{2}}{q E}\left[\sqrt{1+\left(\frac{q E t}{m c}\right)^{2}}-1\right] . \tag{5}
\end{equation*}
$$

4.2. Check that at small time t, your answer agrees with non-relativistic mechanics.
4.3. Show that there is a time $t=t_{0}$ such that, if we shoot a photon at the particle at time $t>t_{0}$ from $x=0$, the photon will never reach the particle.

[^2]
[^0]: ${ }^{1}$ Since a photon's energy E is extremely small compared to the rest energy of the solar sail, we can neglect energy imparted into the sail.
 ${ }^{2}$ Hint: Does the ship reach speeds comparable to c ?

[^1]: ${ }^{3}$ Hint: A nuclear chain reaction will require some ample supply of both X and neutrons, with enough energy to create an excited state X^{\prime}. If we start with a single energetic neutron, should we expect to have more or less after the first collision?

[^2]: ${ }^{4}$ This is a simplification of the actual processes that go on, but is a good approximation for this problem.
 ${ }^{5}$ Hint: Assume that after the collision, the proton and 2 pions moved together at a constant velocity, as if they were one particle of mass $\frac{4}{3} m$. You should find that such a collision is possible at this value of $E_{\max }$.

