PHYS 2170
 General Physics 3 for Majors

Fall 2021

Lecture 10

Nuclear fission and fusion

September 15

1 A very heavy particle of mass M, traveling at speed $0.6 c$, collides into a very light particle of mass $m \ll M$, at rest. After the collision, estimate the speed of each particle.

frame:

$$
P_{\text {tot }}=0=\gamma_{1}^{M} V_{1}+\gamma_{2} v_{2}
$$

$$
v_{2}=-0.6 c
$$

$$
(0) \frac{{\underset{V}{1}}_{1 c o m}^{s-\delta^{\prime}}}{0.6 c}
$$

Back to old frame:, $v_{1}^{\prime} \approx 0.6 c$

$$
\begin{aligned}
& \quad V_{2}^{\prime} \approx \frac{v_{1}^{\prime \prime 0 m}+0.6 c}{1+\frac{1}{c^{2}}(0.6 c) v_{2}^{1 c o m}}=\frac{3 / 5+3 / 5}{1+(3 / 5)^{2}} c \\
& \text { heavy } \\
& E \approx \frac{M_{c}^{\prime}}{}{ }^{2}+\frac{p^{2}}{2 M}=c \frac{65}{1+9 / 25}=c \frac{30}{34}=\frac{15}{17} c
\end{aligned}
$$

2 Why do we think about mass in units of $\mathrm{MeV} / \mathrm{c}^{2}$ in particle or nuclear physics? What is the mass of a neutron in these units?

$$
E^{2}=(c p)^{2}+\left(m c^{2}\right)^{2}
$$

$1 \mathrm{MeV}=$ energy need to $[U=q V]$ push 1 election up $10^{6} \mathrm{~V}$
"if $c=1$ " [choice of units] [replace $1 m \rightarrow 1$ light-secind] $E^{2}=p^{2}+m^{2}$

$$
\begin{aligned}
& E: 1 M_{e} V=1.6 \times 10^{-13} \mathrm{~J} \\
& P: 1 \frac{M_{e} V}{c}=5.3 \times 10^{-22} \mathrm{~N} \cdot 5 \\
& m: \frac{M_{e} V}{c^{2}}=1.8 \times 10^{-30} \mathrm{~kg}
\end{aligned}
$$

particle	mass (kg)	$\frac{\mathrm{MeV}}{\mathrm{c}^{2}}$
electron	10^{-30}	0.5
neutron	2×10^{-22}	900
$\frac{\mathrm{MeV}}{\mathrm{c}^{2}}$		

$1 \frac{\mathrm{MeV}^{2}}{L^{2}}$
$m c^{2}=1(M e V) \frac{1}{x^{2}} \cdot c^{2}$

3 In nuclear fission, the process
neutron

$$
V_{\mathrm{n}}+{ }^{235} \mathrm{U} \rightarrow 3 \mathrm{n}+{ }^{90} \mathrm{Kr}+{ }^{143} \mathrm{Ba}
$$

How much energy might be released during this reaction? If a nuclear warhead yields $10^{15} \mathrm{~J}$ of energy, how much uranium is required?

	E
particle	mass (MeV/ai)
n	940
${ }^{235} \mathrm{U}$	219000
${ }^{9} \mathrm{Kr}$	84000
${ }^{143} \mathrm{Ba}$	130000

$$
\begin{gathered}
\Delta E=\Delta m \cdot c^{2} \\
940+219000-3.940- \\
\simeq-3000 \mathrm{MeV}
\end{gathered}
$$

In reality: get out 200 MeV

$$
\begin{aligned}
10^{15} & \sim 10^{28} \mathrm{MeV} \\
& \sim 10^{26} \mathrm{U}^{1} \mathrm{~s} \\
m_{u} & \sim 4 \times 10^{-25} \mathrm{~kg} \\
& \sim 40 \mathrm{~kg}
\end{aligned}
$$

4 In nuclear fusion, two particles come together to form a new particle: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$. How is this possible if $m_{\mathrm{A}}+m_{\mathrm{B}}<m_{\mathrm{C}}$? How fast does A need to move, if B is at rest, to create C , if $m_{\mathrm{C}}=3 m_{\mathrm{A}}=3 m_{\mathrm{B}}$?

If B is at rest, how fast must A move?
(c) \rightarrow
(A) $\xrightarrow{\vee}$
(B) ${ }^{2}$
(c) \rightarrow

Conserve

$$
\begin{aligned}
&\left(m_{C} c^{2}\right)^{2}=E_{C}^{2}-\left(c p_{C}\right)^{2}=E_{\text {tot }}^{2}-\left(c p_{\text {tot }}\right)^{2} \\
& E_{\text {tot }}=m_{B} c^{2}+\gamma m_{A}^{2} \\
& p_{\text {tot }}=\gamma m_{A} \text { conserve } \\
& \sum_{\text {tot }} \\
& m_{c}^{2}=m_{A}^{2}+m_{B}^{2}+2 \gamma m_{A} m_{B} \\
& m_{\text {mass of }} C
\end{aligned}
$$

$$
\gamma=\left[1-\frac{v^{2}}{c^{2}}\right]_{1}^{-1 / 2}
$$

$$
\frac{V}{C}=\sqrt{1-\left(\frac{2 m_{A} m_{B}}{m_{C}^{2}-m_{A}^{2}-m_{B}^{2}}\right)^{2}}
$$

