PHYS 2170 General Physics 3 for Majors Fall 2021

Lecture 10

Nuclear fission and fusion

September 15

1 A very heavy particle of mass M, traveling at speed 0.6c, collides into a very light particle of mass $m \ll M$, at rest. After the collision, estimate the speed of each particle. [small) 0.6c $=\chi \sim V_1 + \gamma \sim V_2$ frame: Center of mass (nomentum) $|V_1| < \langle |V_2|$ V. % $V_{1} = -0.6c$ ٧<u>م</u>رر (NO 0.6C-5' -0.66+8 *f*M) 8 (small Back to old Evenne, V. = 0.60 $\frac{\sqrt{1000} + 0.6c}{1 + \frac{1}{2}(0.6c)\sqrt{1000}} = \frac{\frac{35 + 35}{1 + (345)}}{1 + (345)}$ heavy $E_{x}M_{y}^{2} = C \frac{y_{y}}{1+y_{y}} =$ $C_{34}^{30} = \frac{15}{15}C$

2 Why do we think about mass in units of MeV/c^2 in particle or nuclear physics? What is the mass of a neutron in these units?

| MeV = energy need to [U = qV] push lellctron up [U = qV] 10^b V $E^{2} = (cp)^{2} + (mc^{2})^{2}$ [replace | m -> | light-second] " if c= (" [choice of units] E = p2+ m2 $\frac{\text{particle}}{\text{mass}} \frac{\text{MeV}}{c^2}$ electron 10⁻³⁰ 0.5 neutron 2×10⁻²⁷ 900 MeV $E:|M_eV| = |.6x|0^{-13}J$ p: 1 MeV = 5,3× 10-22 N.S $Mc^2 = 1 Mev \frac{1}{c^2} \cdot c^2$ M: [MeV = 1.8×10-30 kg

In nuclear fission, the process $\gamma n + {}^{235}U \rightarrow 3n + {}^{90}Kr + {}^{143}Ba$

How much energy might be released during this reaction? If a nuclear warhead yields 10^{15} J of energy, how much uranium is required?

	E .
particle	mass (MeV/\mathcal{A})
n	940
$^{235}\mathrm{U}$	219000
$^{90}\mathrm{Kr}$	84000
¹⁴³ Ba	130000

 $\Delta E = \Delta m \cdot c^{2}$ 940+217000-3.940-... = -3000 MeV
In reality: get out 200 MeV
1015 1 1028 MeV

$$0^{15} \int \sim 10^{26} \text{ MeV}$$

~ $10^{26} \text{ U}'\text{s}$
mu~ 4 × 10⁻²⁵ kg
~ 40 kg.

3

In nuclear fusion, two particles come together to form a new particle: 4 $A + B \rightarrow C$. How is this possible if $m_A + m_B < m_C$? How fast does A need to move, if B is at rest, to create C, if $m_{\rm C} = 3m_{\rm A} = 3m_{\rm B}$? IF B is at rest. how fast must A move? ß -Eff DASERVE $(m_{c}c^{2})^{2} = E_{c}^{2} - (cp_{c})^{2} = E_{tot}^{2}$ x={- v1- $E_{tmf} = m_{RC}^2 + \chi m_{C}^2$ $= m_A^2 + m_R^2 + 2 \chi m_A m_R$ mass of