PHYS 2170
 General Physics 3 for Majors

Fall 2021

Lecture 17

Reflection of waves

October 4

1 Review the wave equation on a string.

$$
\frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} v}{\partial x^{2}}
$$

wave speed $v=\sqrt{\frac{T}{\mu}}$
$T=$ tension
$\mu=$ mass/unit length
Solution \#1: plane waves ("building blocks")

$$
y(x, t)=e^{i\left(k_{x}-\omega t\right)} \quad \omega=v k \text { or }-v k
$$

ordinary
ordinary
frequency superimpose multiple: $\operatorname{Re}\left[e^{i k_{1}(x-v t)} e^{i k_{2}(x-v t)}+\cdots\right]$
$\downarrow\left(H_{2}\right) \quad\left(5^{-1}\right)$
$2 \pi f=\omega=$ angular frequency; k : wave number
Solution \#2: $\quad y(x, t)=\underbrace{f(x-v t)}_{\text {right -moving }}+\underbrace{g(x+v t)}_{\text {left-movirg }}$

2 Suppose that we tie the end of a string (that exists for $x \geq 0$) down at tied $x=0$. What is the boundary condition on y ? What happens to an ty own incoming wave?

means that

$$
y(x=0, t)=0
$$

$x=0$
(boundary condition)

$$
y(x, t)-+(x-v) \text { e } y(x i v a
$$

$$
\text { Since } y(0, t)=0 \text { : }
$$

$$
y(0, t)=f(0-v t)+g(0+v t)
$$

$$
=f(-v t)+g(v t)=0
$$

$$
\text { replace }\left[\begin{array}{l}
g(v t)=-f(-v t) \\
\frac{g(x)=-f(-x)}{y=f+g}
\end{array}\right.
$$

- destructive interference, $\underbrace{\circ} \cdot . . .$. $i f_{i g} \operatorname{sun}|f+g|<|f|$

3 Consider an incoming "square wave" on a string tied down at one end.
Describe how the wave reflects at the boundary.

4 What are the boundary conditions on a string with a free end? How do waves reflect off of this?

- ring has negligible mass

$$
F_{n e t}=m \cdot a=0
$$

$$
\begin{aligned}
F_{x} & =F_{y}=0 \\
& \Rightarrow T_{y}=0
\end{aligned}
$$

$$
=0
$$

$g^{\prime}(v t)=-f^{\prime}(-v t) \quad \begin{aligned} & a t=0 \\ & x=0\end{aligned}$

$$
\int g^{\prime}(v t) \cdot v d t=g(v t)
$$

$$
\int-f^{\prime}(-v t) \cdot v d t=f(-v t)
$$

$g(v \theta)=f(-v t)$

- constructive
constructive
interference,
$=0 \quad y=f+g$

