PHYS 2170
 General Physics 3 for Majors

Fall 2021

Lecture 24

Interference of light in thin films and between two slits

October 20

1 Discuss the boundary conditions for how light reflects at an interface between two different materials.
$E M$ waves ("/ight") propagates at velocity c / n

$$
\cos (k x+\pi) \quad n_{1}<n_{2}
$$

$\Delta \phi=\pi$

- if no material: $n=1$
- in a material: $n \geq 1$

$$
k_{1}=\frac{2 \pi}{\lambda_{1}} \quad k_{2}=\frac{2 \pi}{\lambda_{2}}
$$

incoming frequency f_{1}

$$
f_{2}=f_{1}
$$

- frequency, not wackeng. is constant across interface.

2 Materials A and B have index of refraction $1<n_{\mathrm{A}}=2<n_{\mathrm{B}}=3$. If a thin layer of A of width w is painted on a thick slab of B , what is the longest wavelength for which there is constructive interference due to the film of A? What about destructive interference?

path 1:
$\phi_{\text {bet }}+\pi+\phi_{\text {aft }}$

$$
\begin{aligned}
& \frac{c}{n_{A}}=f \lambda_{A} \quad \frac{c}{1}=f \lambda_{0} \\
& \Delta \phi=\phi_{\text {path }}-\phi_{p_{a}+h 1}=2 \phi_{x}=\frac{4 \pi w}{\lambda_{A}} \\
& \text { constructive interference: }=\frac{8 \pi w}{\lambda_{0}}
\end{aligned}
$$

destructive interference?
constructive: destructive:

$$
\phi_{x}=\phi_{y}=\frac{W}{\lambda_{A}} 2 \pi \quad \frac{1}{4} \lambda_{0}=w \quad \frac{1}{8} \lambda_{0}=w
$$

3 Describe how light (and waves in general) propagate away from a coherent point source.

$$
k=\frac{2 \pi}{\lambda}
$$

$2 d:$

$$
\begin{aligned}
& \left(((\min)) \quad E \sim \frac{1}{\sqrt{r}} e^{i k(r-c t)}\right. \\
& I \sim \frac{\text { energy }}{\text { volume }} \sim \frac{1}{2} \varepsilon_{0}|E|^{2} \\
& \text { wavefront energy } \sim \pi r \times I \sim r \text {-ind. } .
\end{aligned}
$$

Sd:

4 Describe the amplitude of light which passes through a pair of thin slits const. phase in a wall (double-slit interference).

- const phase in incoming wave
- at openings slit, light is in phase

$$
r_{b 0 t} \simeq r+\frac{a}{2} \sin \theta
$$

$$
E \sim \frac{1}{\sqrt{r}} e^{-i k(t}\left(e^{i k\left(r-\frac{q}{2} \sin \theta\right)}+e^{i k\left(r+\frac{a}{2} \sin \theta\right)}\right)
$$

$$
e^{i k r} 2 \cos \left(\frac{k_{a}}{2} \sin \theta\right)
$$

5 Describe the intensity of light as viewed on a screen far from the original slits.

