Homework 10

Due: 11:59 PM, Tuesday, November 24. Submit your homework via Canvas.
Grading: 30 points required for full credit. 40 points are possible. You can score over 100%.

10 points Problem 1: A particle of mass m is in a one dimensional infinite square well: $0 \leq x \leq L$.
(a) Using the first order relativistic correction to the Hamiltonian

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{2}}+\cdots \tag{1}
\end{equation*}
$$

use first order perturbation theory to determine the eigenvalues of H to order c^{-2}.
(b) At what energy scale do you expect first order perturbation theory fails? Comment on the answer.

10 points Problem 2 (Crystal field splitting): Consider a hydrogen atom in a perturbing potential

$$
\begin{equation*}
H^{\prime}=\frac{1}{2}\left(k_{x} x^{2}+k_{y} y^{2}+k_{z} z^{2}\right) . \tag{2}
\end{equation*}
$$

This is a toy model for how low-lying atomic energy levels can get distorted when atoms are found in a crystal lattice with a low symmetry group.

In this problem, you should not do any radial integrals. Instead, your job is only to qualitatively describe how the perturbation H^{\prime} could split the high degeneracy of the hydrogen atom. You should begin by expressing x, y and z in terms of spherical coordinates. Then qualitatively sketch the evaluation of $\langle n l m| H^{\prime}\left|n l^{\prime} m^{\prime}\right\rangle$, focusing on: (1) figuring out which radial integrals could be different; (2) which angular integrals might be non-zero. The hydrogen atom wave functions from Table 8.2 of McIntyre will be useful.
(a) What degeneracy could be lifted if $k_{x}=k_{y}=k_{z}$?
(b) Describe what happens in the $n=1,2$ sectors of the hydrogen atom if $k_{x}=k_{y}=-\frac{1}{2} k_{z}$: how many degenerate energy levels are lifted?

10 points Problem 3: Consider the Hamiltonian

$$
H=\left(\begin{array}{cccc}
0 & \epsilon & \epsilon & 0 \tag{3}\\
\epsilon & 0 & 0 & 2 \epsilon \\
\epsilon & 0 & 1 & 0 \\
0 & 2 \epsilon & 0 & 1-3 \epsilon
\end{array}\right)
$$

Using degenerate perturbation theory, find the eigenvalues of H to second order in ϵ.

10 points Problem 4 (Trapped ions): In trapped ion crystals, including those studied at NIST in Boulder, the quantum spins on the ions are manipulated using "spin-dependent forces". Consider N spin- $\frac{1}{2}$ degrees of freedom (on the ions) coupled to a single one dimensional harmonic oscillator. Physically, this oscillator is a phonon mode, and corresponds to the collective vibration of the ion crystal.

A cartoon model for this system is as follows. The bare Hamiltonian is

$$
\begin{equation*}
H_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} . \tag{4}
\end{equation*}
$$

The Hilbert space of this system is then spanned by the following states: $\left|n s_{1} s_{2} \cdots s_{N}\right\rangle$, where $n=$ $0,1,2, \ldots$ denotes the oscillator's energy level, and $s_{1}, \ldots, s_{N}= \pm \frac{1}{2}$ denotes the z-component of the spins. The perturbation Hamiltonian corresponding to spin-dependent forces is

$$
\begin{equation*}
H^{\prime}=-c x\left(S_{1 z}+S_{2 z}+\cdots+S_{N z}\right) . \tag{5}
\end{equation*}
$$

The coefficient $c>0$ is a constant.
(a) Explain why the states $\left|n s_{1} \cdots s_{N}\right\rangle$ are all eigenvectors of H_{0}. What are their eigenvalues? ${ }^{1}$
(b) Show that

$$
\begin{equation*}
\left\langle n^{\prime} s_{1}^{\prime} \cdots s_{N}^{\prime}\right| H^{\prime}\left|n s_{1} \cdots s_{N}\right\rangle=A_{n^{\prime} n} \delta_{s_{1} s_{1}^{\prime}} \cdots \delta_{s_{N} s_{N}^{\prime}} ; \tag{6}
\end{equation*}
$$

what is the form of the matrix $A_{n^{\prime} n} ?^{2}$
(c) Use second order perturbation theory - being sufficiently careful when accounting for the degeneracy of H_{0} - to evaluate the correction to the $n=0$ energy levels. You should find that

$$
\begin{equation*}
E_{0}\left(s_{1}, \ldots, s_{N}\right)=K\left(s_{1}+\cdots+s_{N}\right)^{2} . \tag{7}
\end{equation*}
$$

Find the value of K in terms of m, ω, a and \hbar. Conclude that the low energy states in the Hilbert space are captured by an effective Hamiltonian

$$
\begin{equation*}
H_{\mathrm{eff}}=\frac{4 K}{\hbar^{2}}\left(S_{1 z}+S_{2 z}+\cdots+S_{N z}\right)^{2} . \tag{8}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Hint: Recall how to deal with multi-particle Hamiltonians: see e.g. a problem on Homework 4.
 ${ }^{2}$ Hint: Use raising and lowering operators.

