## Homework 12

Due: 11:59 PM MST, December 6. Submit your homework via Canvas.

**Grading:** 35 points required for full credit. 35 points are possible.

**Problem 1** (Chiral molecules): Consider a two dimensional molecule with two "inequivalent" L/R forms, as shown in Figure 1. If the world were two dimensional (namely we cannot rotate this molecule through the page), then these L and R molecules are classically distinguishable and not (without breaking bonds) convertible into one another by a rotation. We would then call this molecule chiral.

Quantum mechanically, however, can this finite quantum system really have two ground states? Let  $\theta$  denote the relative angular displacement between the A and B atoms. Classically, there would be two ground states at  $\theta = \pm 2\pi/3$ . So we might crudely model this system with the quantum Hamiltonian

$$H = -\frac{\hbar^2}{2I} \frac{\partial^2}{\partial \theta^2} + \frac{U}{2} \left( |\theta| - \frac{2\pi}{3} \right)^2. \tag{1}$$



**Figure 1:** L/R forms of a chiral molecule in two dimensions.

Note that the potential has minima at  $\theta = \pm 2\pi/3$ .

5 points (a) Explain why  $I \sim MR^2$ , where R is the length of a chemical bond and M is the mass of a typical (e.g. carbon) atom. Then find the numerical value of I.

- (b) Explain why U can (crudely) be estimated by the energy scale  $10^{-18}$  J.
- (c) Assuming that the wave function is trapped near  $\theta = 2\pi/3$ , estimate the ground state energy, and compare to U. Conclude that the wave function is effectively trapped at  $\theta = 2\pi/3$ , at least on short time scales.

10 points (d) Argue that if the particle starts at  $\theta = 2\pi/3$ , the time it will take to tunnel to  $\theta = -2\pi/3$  can be estimated as

$$\tau = \sqrt{\frac{I}{U}} \exp\left[\frac{8\pi^2}{9\hbar} \sqrt{IU}\right]. \tag{2}$$

(e) Find the numerical value of the tunneling time  $\tau$  found in (2). Do you think it is reasonable for chemists and biologists to talk about molecular chirality – i.e., does a chiral molecule stay in the L (or R) state for a "long time"?

10 points Problem 2 (Power law interactions): Consider a particle of mass m in a one dimensional potential

$$V(x) = -C(|x| + x_0)^{-\alpha}. (3)$$

Assume C > 0 and  $\alpha > 0$ . Use the Bohr-Sommerfeld approximation to argue that there are a finite number of bound states in this potential when  $\alpha > 2$ , and an infinite number of bound states for  $0 < \alpha \le 2$ .

10 points **Problem 3:** Consider a particle of mass m in a 1d harmonic oscillator of frequency  $\omega$ :

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2. {4}$$

In the question that follows, calculus is not allowed!

- (a) In classical mechanics, the (x, p) plane is often called **phase space**. Show that in phase space, the curves on which the Hamiltonian H = E (here E is some constant) are ellipses. Sketch one such curve as accurately as you can, labeling axes and relevant scales properly.
- (b) Use the geometric interpretation of the Bohr-Sommerfeld quantization condition to approximately quantize the harmonic oscillator. Compare to the exact answer.