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Physics 4410: Quantum Mechanics 2 Fall 2020

Homework 2

Due: 11:59 PM, Tuesday, September 8. Submit your homework via Canvas.

Problem 1 (Ethylene): The ethylene molecule CoHy is sketched in Figure 1. In its molecular ground
state, the atoms all lie (on average) in a two-dimensional plane. On very long time scales, we can envision
that the electrons bound to carbon atoms, as well as those in the covalent bonds, are in their approximate
ground state. We can then model the resulting molecular dynamics as an effective quantum mechanical
problem for the nuclei alone. A particularly low energy mode of molecular motion corresponds to torsional
motion: the twisting of the two halves of the molecule relative to one another, as shown in Figure 1. The
torsional motion can be modeled by an effective one dimensional Hamiltonian
h2 82
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Here I represents a moment of inertia for the torsional mode
and U represents the potential energy barrier for one of the (9
—CHjy groups to flip.

(a) Taylor expand the potential near # = 0, and argue that this
model is approximated by a harmonic oscillator. Estimate C
the smallest eigenvalues of H. H }

(b) Give a physical argument why H is unchanged if 6 — 0 +.
Figure 1: The ethylene molecule CoHs. The

torsion mode corresponds to the twisting of

(c) Give a heuristic estimate for the total number of energy lev- .
one —CHy relative to the other.

els which are within the regime of validity of the harmonic
oscillator approximation of part (a).

(d) What are the relevant energy, mass and length scales associated with the quantum hydrogen atom
(and thus quantum chemistry in general)?! Using these scales, make order-of-magnitude estimates
of U, the C-H bond length, and ultimately the moment of inertia I. Do not worry about factors of
2, only orders of magnitude. Then, estimate the wavelength of light that would be absorbed by this
torsional oscillator. Compare to the experimental value: A ~ 2 x 1076 m.

Problem 2 (Correlation functions): It is often useful to define and calculate a correlation function

(Ylx(t)z + z2(t)|)
2

c(t) = = (Ylz[v) (WDl (t)]) (2)

where z(t) = efze~ !, In a classical statistical ensemble of particles, C(t) measures an extent to which
the position of a particle at time ¢t = 0, z, correlates with its value x(¢) at a later time ¢. Note that C'(0)

would simply measure the variance of the position x.

You should be able to simply quote these answers, with no derivation, using the book (or online).



Assume [¢p) = |0) is the ground state of the simple harmonic oscillator in one dimension. Evaluate
C(t) and comment on the result.? You can work in dimensionless units.

15 points  Problem 3 (Squeezed states): Consider a particle living in one dimension, controlled by either of the
two Hamiltonians

2
1
H, = §—m+§mw2x2, (3a)
2
p 1 2,42
Hy=2 -
2 =5 + 5w KT, (3b)

where k is a positive, dimensionless real number. The operators z,p are the same in both Hy and Hs.

(a) Find creation and annihilation operators a; 2 and aLQ obeying

lax, a}] = [ag, af] =1 (4)
and
+ 1
H, = hw a1a1—|—§ , (5a)
oo i 1
Hy = hwr* | agas + 5 (5b)

(b) Write z and p in terms of both a; 2 and aLQ. Feel free to set h = m = w = 1, if you like. Show that

1
m+d:%%&, (6a)
ay — ai = k(ag — a;). (6b)

Let |fi12) denote the n'® eigenstate of Hy 5. Suppose that we took the ground state of Ha, |02), and wrote
it in terms of eigenstates of Hj:

102) = cnlma). (7)
n=0

(c) To find an expression for ¢,, we can use the fact that
az|02) = 0. (8)

Combining (8) with the results of part (b), show that

Cn+2 n+1
= — tanh(s). 9
2 [ tanh(s) )
where we have defined k = e*.> Then conclude that
0 n odd
en=co{ (—tanhs)™2y/n!  even (10)

2n/2(1)]

2 Hint: Recall that e 7H4h(0)) = |b(t)) and (p(0)|e'* = ((¢)].
3 Hint: Look up hyperbolic trigonometric functions’ identities on the Internet!
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(d) Use the condition that the wave function is normalized to fix cp.*
(e) The states you have just found are called squeezed states. To get some understanding for why
squeezed states have practical value, calculate® for i = 1,2

Axi = <0i‘$2’0i> — <Oi]x]0i)2. (11)

Conclude that it is possible to generate excited harmonic oscillator states whose position is known
better than it is in the ground state! How is this compatible with the Heisenberg uncertainty principle?

In the language of = and p, the result of (e) may not seem very worthwhile. However, squeezed states
have enormous practical value in building highly accurate quantum sensors. For example, if we interpret
the states |n1) as states with n quanta of light (photons), then our results hint at the possibility of being
able to generate very coherent quantum states of light, whose properties (e.g. phase) are known more
accurately than an otherwise coherent state limited only by thermal noise. You would need to construct
a slightly more complicated quantum state than in this problem to fully realize this capability, but the
essential principles are the same.

Problem 4 (Casimir force): Consider a one dimensional cavity 0 < z < L, with metallic plates on either
side. Assume that, as in our three dimensional world, there are electromagnetic waves that propagate at
speed ¢ and are confined within the cavity.

(a) Give a heuristic argument, using a simple classical theory of waves (light travels at speed c¢), that
there are oscillations of the electromagnetic waves inside the cavity at frequencies

wn:%, (n=1,2,3,...). (12)

In the quantum theory, what will happen is that each of the normal modes n above will become a
simple quantum harmonic oscillator, of frequency w,.® So the ground state energy is, naively,

2L
n=1
Mathematically, (14) makes no sense! One heuristic argument that we can use to make sense of this
is to think of the following crude regulator. There exists a very small length scale ¢, called the Planck
scale, below which the conventional physics of space and time is not understood (gravity and quantum
mechanics need to be unified). So once the wavelength of the normal modes n approaches ¢, we cannot

trust the simple harmonic oscillator model anymore. We propose to replace the ground state energy with

hme e~ _

Eo(L,0) = o1 > ne~t, (14)
n=1

where )\, is the wavelength of normal mode n. This regulator will kill terms in the sum above which are

very short wavelength compared to the Planck scale.

VI—da’
5 Hint: Do not use the results of parts (b) through (d).
5The mass of the oscillator is not defined, however. In quantum electrodynamics, the electric and magnetic fields play
the role of conjugate position and momentum!

a2 1
Hint: Z e a’ =
n=0



(b) What is A,,? Show that as £ — 0,

Bo(L0) = ¢ [

412 1
ET E AR . (15)

I encourage use of Mathematica’s Sum and Series functions.

Such regulators play a critical role in our modern understanding of quantum field theories and relativistic
particle physics. The quantum theory is plagued with numerous divergences which are related to the one
above: an inability to understand physics at short distance scales.

A

(c) The final observation is as follows: our cavity
of length L is not isolated, but rather exists as R
part of a larger universe, which is also filled with
electromagnetic waves. Treat the universe as a
one-dimensional cavity of size R > L, with our
cavity of length L contained within it, as shown

in Figure 2. Conclude that the total energy of

the universe is given by Figure 2: A toy model of the universe of size R and the
cavity of size L. For simplicity, take the cavity to be at one
end of the universe.

universe

1 ~ cavity"

2hrcR _ hre

Eiot = Eo(L,£) + Eo(R — L, {) ~ = ol (16)

(d) The first term of (16) is interpreted as a vacuum energy density that fills the universe, and it cannot

be measured experimentally. However, by changing the size L of the cavity, we can measure a force

N dEtot
dL

F= (17)
between the two walls of the cavity. Show that this force is independent of the “artificial” cutoff ¢,
which we had not introduced in a microscopically justified way. Hence, this force represents a physical
prediction of quantum mechanics. Is the force between plates attractive or repulsive?

The force you have found is the Casimir force. It has been seen in experiments. These experiments
conclusively show that the non-vanishing ground state energy of the harmonic oscillator is physical.”

"You might have thought, in particular, that a quantum oscillator should have Hamiltonian

»? mw2s? ~ hioJ
2m 2 2

As h — 0, this Hamiltonian also reduces to the classical harmonic oscillator’s Hamiltonian, but this model has ground state
energy E = 0, and would predict no Casimir force.



