
Physics 4410: Quantum Mechanics 2 Fall 2020

Homework 4

Due: 11:59 PM, Thursday, September 24. Submit your homework via Canvas.

Problem 1: Consider the Hamiltonian for two decoupled harmonic oscillators:

H =
p21
2m

+
p22
2m

+
k

2
x21 +

k

2
x22. (1)

(a) Define5 points the particle exchange operator P as follows:

x1 = Px2P, (2a)

x2 = Px1P, (2b)

p1 = Pp2P, (2c)

p2 = Pp1P. (2d)

Recall that P 2 = 1. Show that [H,P ] = 0 (equivalently, H = PHP ).1

(b) Give5 points an example of an operator V that you could add to the Hamiltonian which would couple the two
oscillators together (i.e., make H + V not separable as a sum of operators acting on 1 plus operators
acting on 2) while maintaining particle indistinguishability (i.e. V = PV P ).

(c) Give an example of an operator V that would break indistinguishability (i.e. V 6= PV P ).

Problem 2 (Product states): Suppose that you have quantum system A, which can be found in one of M
possible states |a1〉, . . . , |aM 〉, and system B which can be found in one of N possible states |b1〉, . . . , |bN 〉.
Then the most general state of system A and B together is

|ψAB〉 =
M∑
i=1

N∑
j=1

ci,j |ai〉 ⊗ |bj〉, (3)

where |ai〉 ⊗ |bj〉 is abstract notation for the simultaneous state of A being in state |ai〉 and B being in
state |bj〉. McIntyre drops the explicit ⊗ symbol. There is a natural distributive property

(α|a1〉+ β|a2〉)⊗ |b1〉 = α|a1〉 ⊗ |b1〉+ β|a2〉 ⊗ |b1〉. (4)

In this sense, ⊗ “multiplies” the Hilbert spaces of systems A and B!
Suppose that 〈ai|aj〉 = δij and 〈bi|bj〉 = δij – i.e. both bases above are orthonormal. Then we define

(〈ai| ⊗ 〈bk|) (|aj〉 ⊗ |bl〉) = δijδkl. (5)

In words, the bra of a product of kets is the product of bras. Coefficients are complex conjugated when
going from ket to bra, just as usual.

1Hint: Consider the following chain of identities: p21 = p1p1 = p1P
2p1.
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(a) For n = 1, 2, define5 points the states

|ψn〉 =

M∑
i=1

ψn,i|ai〉, |φn〉 =

N∑
i=1

φn,i|bi〉. (6)

By using the distributive property, show that

(〈ψ1| ⊗ 〈φ1|)(|ψ2〉 ⊗ |φ2〉) = 〈ψ1|ψ2〉〈φ1|φ2〉. (7)

(b) Let5 points OA be an operator acting on only system A, e.g.

OA|ai〉 ⊗ |bk〉 =

M∑
j=1

Oji|aj〉 ⊗ |bk〉. (8)

In lecture, we said that OA was OA1B, with 1 denoting the identity operation (doing nothing to the
state of B). Either by explicit calculation, or crisp use of earlier identities, explain why

(〈ψ1| ⊗ 〈φ1|)OA(|ψ2〉 ⊗ |φ2〉) = 〈ψ1|OA|ψ2〉〈φ1|φ2〉. (9)

The state |ψ2〉 ⊗ |φ2〉 is called a product state and is particularly easy to work with, because of the
fact that inner products and simple expectation values “factorize” onto problems on systems A and B
separately. You should memorize these main results of this problem, as they will prove essential in doing
calculations in multi-particle systems.

Problem 3 (Ferromagnetism): Consider two non-interacting spin-12 electrons of mass m in an infinite
square well of length L. Let |n1n2〉 denote the infinite square well energy eigenstates of electrons 1 and 2
respectively, and |s1s2〉 denote the electron spin eigenstates (in the z-direction) of each particle.

(a) Which5 points of the following wave functions are allowed, given that electrons are fermions?

|a〉 =
|12〉 − |21〉√

2
⊗ |+−〉 − | −+〉√

2
, (10a)

|b〉 =
|12〉+ |21〉√

2
⊗ |+−〉 − | −+〉√

2
, (10b)

|c〉 = |11〉 ⊗ |+−〉 − | −+〉√
2

, (10c)

|d〉 =
|12〉 − |21〉√

2
⊗ | − −〉, (10d)

|e〉 = |11〉 ⊗ | − −〉, (10e)

|f〉 =

(√
1

3
|12〉 −

√
2

3
|21〉

)
⊗ | − −〉. (10f)

You should find that 3 out of 6 are acceptable wave functions.

(b) For5 points the acceptable wave functions, calculate r, defined as

r =
√
〈(x1 − x2)2〉, (11)

with expectation value taken in the appropriate quantum state. Use Mathematica (if desired) to eval-
uate integrals. You should find that the three allowable wave functions have r/L ≈ 0.196, 0.256, 0.41.2

2Hint: Read McIntyre Section 13.2 for a partial answer (although he also leaves integral evaluation to homework). Also,
use the result of Problem 2 to get rid of the spin part of each wave function as soon as possible!
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(c) For each of the 3 acceptable wave functions, determine the energy (call it Ekin) of the state in the
infinite square well. Almost no calculation is needed.

(d) In5 points reality, the electrons will interact via Coulomb interactions. We can estimate the energy of a given
wave function to be

Etot ≈ Ekin +
e2

4πε0r
. (12)

Using the mass and charge of the physical electron, along with the values of fundamental constants,
determine the minimal value of Etot as a function of L, along with the wave function that minimized
the energy. Show that above vs. below the length L ≈ 0.5 nm, the “ground state wave function”
which minimizes Etot changes.

(e) Iron is a ferromagnet, a phase of matter in which electronic spins spontaneously align with one
another. Since the critical length scale above is comparable to atomic length scales, is it plausible
that “exchange interactions” cause some materials to spontaneously magnetize? The effect is plausible
so long as the energy gap between spin polarized and spin unpolarized states is at least as large as
the thermal energy Ethermal ∼ 4 × 10−21 J. At the critical L above, evaluate Etot; give a handwavy
argument whether your model is consistent with room temperature ferromagnetism, or not, in iron.

Problem 4 (Quarks): Quantum chromodynamics (QCD) tells us that the ordinary matter we see around
us, made up of protons and neutrons, is itself made up of more fundamental excitations called quarks and
antiquarks. Note that quarks can be distinguished from antiquarks, but two quarks are indistiguishable
fermionic particles, as are two antiquarks. A quark has 3 internal states, which we call “color states”:
red |r〉, green |g〉, and blue |b〉. An antiquark is similar, but we denote the states with |̄r〉, |ḡ〉 and |b̄〉 to
emphasize that quarks and antiquarks are distinguishable particles.

(a) A baryon5 points is a particle made out of 3 quarks in the wave function

|baryon〉 =
|rgb〉+ |gbr〉+ |brg〉 − |grb〉 − |bgr〉 − |rbg〉√

6
. (13)

Given that quarks are fermions, is that an acceptable wave function?

(b) A meson is a particle made out of a quark and an antiquark, in the wave function

|meson〉 =
|rr̄〉+ |gḡ〉+ |bb̄〉√

3
. (14)

This wave function is not symmetric under the exchange of the two particles. Why is that allowed?

(c) Argue that5 points mesons are bosonic particles, while baryons are fermionic particles.3

(d) Now suppose there was a fourth color state, yellow |y〉. The baryon wave function (13) would need
to be modified so that it contains 4 quarks, one in each color state, suitably antisymmetrized. Would
the baryon be a boson or a fermion?

3Hint: To exchange two mesons, we have to exchange a quark and an antiquark. What is the net contribution to the
sign change of a multi-particle wave function from applying the appropriate number of particle exchange operations (one for
each fundamental particle that needs to swap)? It might be useful to think of the schematic form of the wave function of 2
mesons: |rr̄〉 ⊗ |rr̄〉 + · · · . What would happen to this wave function if we swapped only the quarks? Once you understand
the meson case, repeat the argument for baryons.
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Problem 5 (Pigments): A typical pigment molecule has the structure sketched in Figure 1, and consists
of a long chain of covalently bonded atoms which can be approximated as a one dimensional infinite
square well. Suppose there are N atoms in the long chain of atoms: then each bond contributes one
“free” spin-1/2 electron, of mass m, which may move up and down the chain of bonds freely. If each bond
has length a, when N is large, we may thus approximate these electrons as moving in an infinite square
well of width L = Na.

(a) Using5 points the Pauli exclusion principle and the
energy levels for the particle in a box (i.e.
infinite square well), describe which energy
levels in the box are filled and which are
empty in the ground state. Ignore electron-
electron interactions.

Figure 1: The β-carotene molecule is responsible for the orange
color of carrots.

(b) Now,5 points suppose we send a photon of wavelength λ at the pigment molecule. What is the largest value
of λ such that the photon can be absorbed by an electron in the pigment molecule? Assume N > 1.
When the photon is absorbed, the electron must be able to jump to an unoccupied state in the box.
You should find that when N � 1,

λ ≈ 4cma2

π~
N. (15)

(c) We might estimate that N = 18 for β-carotene, as depicted in Figure 1. Evaluate λ, given that
m ≈ 9× 10−31 kg and a ≈ 10−10 m, and compare to the wavelength of orange light: 600 nm.
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