Homework 5

Due: 11:59 PM, Tuesday, October 6. Submit your homework via Canvas.

10 points Problem 1 (White dwarf): A white dwarf is a star in which the quantum mechanical "degeneracy pressure" arising from a Fermi gas of mobile electrons prevents gravitational collapse. In this problem, we consider a white dwarf to be a star of radius R, containing a density n of nucleons of mass $m_{\text {nuc }}$. Assume that every nucleon contributes one mobile electron of mass m to a Fermi gas. The gravitational potential energy of a white dwarf of N total nucleons can be approximated as

$$
\begin{equation*}
V_{\text {grav }}=-\frac{3 G M^{2} N^{2}}{5 R} \tag{1}
\end{equation*}
$$

(a) What is the number density of mobile electrons? Since electrons have spin $-\frac{1}{2}$, what is the corresponding energy density of the Fermi gas? ${ }^{1}$ Conclude that the total energy of the white dwarf is given by

$$
\begin{equation*}
E_{\mathrm{tot}}=-\frac{3 G M^{2} N^{2}}{5 R}+\left(\frac{3}{2 \pi}\right)^{7 / 3} \frac{\pi^{3} \hbar^{2} N^{5 / 3}}{5 m R^{2}} \tag{2}
\end{equation*}
$$

(b) Find the radius R of the white dwarf by minimizing $E_{\text {tot }}$:

$$
\begin{equation*}
R=\left(\frac{9 \pi}{4}\right)^{2 / 3} \frac{\hbar^{2}}{G m M^{2} N^{1 / 3}} . \tag{3}
\end{equation*}
$$

(c) Numerically determine the radius of a white dwarf with a mass comparable to our sun, $10^{30} \mathrm{~kg}$. Estimate that the nucleon mass $M \approx 10^{-27} \mathrm{~kg}$ and the electron mass $m \approx 10^{-30} \mathrm{~kg}$ in your calculation.

Problem 2 (Bloch oscillations): In Lecture 12, we found the following dispersion relation for electrons hopping on a lattice:

$$
\begin{equation*}
E(k)=\alpha-2 \beta \cos (k a) . \tag{4}
\end{equation*}
$$

5 points (a) Evaluate the group velocity as a function of k.
5 points (b) In an external force of strength F, we can heuristically think of a quantum wave packet as having a time dependent mean wave number:

$$
\begin{equation*}
\bar{k}(t)=\frac{F t}{\hbar} . \tag{5}
\end{equation*}
$$

The mean position of the wave packet can then be found by solving the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} \bar{x}}{\mathrm{~d} t}=v_{\mathrm{g}}(\bar{k}(t)) . \tag{6}
\end{equation*}
$$

Show that the position \bar{x} of the wave packet oscillates in time. These are called Bloch oscillations and are a striking consequence of the discrete translation symmetry on the lattice.

[^0]Problem 3: Consider the following modification of the model we studied in Lecture 14: for integer n^{\prime},

$$
\begin{align*}
H\left|2 n^{\prime}\right\rangle & =\alpha\left|2 n^{\prime}\right\rangle-\zeta_{1}\left|2 n^{\prime}+1\right\rangle-\zeta_{2}\left|2 n^{\prime}-1\right\rangle, \tag{7a}\\
H\left|2 n^{\prime}+1\right\rangle & =\alpha\left|2 n^{\prime}+1\right\rangle-\zeta_{1}\left|2 n^{\prime}\right\rangle-\zeta_{2}\left|2 n^{\prime}+2\right\rangle . \tag{7b}
\end{align*}
$$

Assume α is real, and $\zeta_{1}, \zeta_{2}>0$.
5 points (a) Show that $\left[H, T_{2}\right]=0$. Conclude that we can look for eigenvectors of H of the form

$$
\begin{equation*}
|\psi\rangle=\sum_{n^{\prime}=-\infty}^{\infty} \mathrm{e}^{2 \mathrm{i} n^{\prime} \theta}\left[c_{1}\left|2 n^{\prime}\right\rangle+c_{2} \mathrm{e}^{\mathrm{i} \theta}\left|2 n^{\prime}+1\right\rangle\right], \tag{8}
\end{equation*}
$$

for unknown parameters c_{1} and c_{2}.
5 points (b) Show that the eigenvalues of H are the eigenvalues of the following 2×2 matrix:

$$
H(\theta)=\left(\begin{array}{cc}
\alpha & -\zeta_{1} \mathrm{e}^{\mathrm{i} \theta}-\zeta_{2} \mathrm{e}^{-\mathrm{i} \theta} \tag{9}\\
-\zeta_{1} \mathrm{e}^{-\mathrm{i} \theta}-\zeta_{2} \mathrm{e}^{\mathrm{i} \theta} & \alpha
\end{array}\right)
$$

What values of θ should we restrict to?
5 points (c) Find the eigenvalues of $H(\theta)$. Sketch the resulting band structure (eigenvalues of the Hamiltonian as a function of θ). Describe, as a function of Fermi energy E_{F}, whether this model describes a metal or an insulator. ${ }^{2}$

5 points BONUS

Problem 4 (Power law hopping): Consider a quantum particle hopping between sites of a one-dimensional lattice according to the Hamiltonian

$$
\begin{equation*}
H=-\sum_{\substack{m, n=-\infty \\ m \neq n}}^{\infty} \frac{h}{|m-n|^{\alpha}}|n\rangle\langle m| . \tag{10}
\end{equation*}
$$

(a) Let $T=|n+1\rangle\langle n|$ denote the translation operator. Show that $[H, T]=0$.
(b) Show that the eigenvalues of H are given by

$$
\begin{equation*}
E(k)=-2 h \sum_{n=1}^{\infty} \frac{\cos (n k a)}{n^{\alpha}}, \quad|k| \leq \pi a . \tag{11}
\end{equation*}
$$

Here a is a variable with the units of length which represents the spacing between atoms in the lattice.
(c) Show that $E(0)$ is only finite if $\alpha>1$. Hence we should restrict to this regime, or else the model is not physical.
(d) Assume $\alpha>3$. Taylor expand $\cos (n k a)$ to quadratic order in k. Then argue that as $k \rightarrow 0$,

$$
\begin{equation*}
E(k) \approx E(0)+\frac{\hbar^{2} k^{2}}{2 m_{\mathrm{eff}}}+\cdots \tag{12}
\end{equation*}
$$

with $m_{\text {eff }}<\infty$. Even though particles can hop arbitrarily large distances, low energy excitations behave as if they are nice and local!

[^1](e) For $\alpha<3$, we can estimate the behavior of $E(k)$ as $k \rightarrow 0$ as follows: starting with (11), we write
\[

$$
\begin{equation*}
E(k)-E(0) \approx-2 h \int_{1}^{\infty} \mathrm{d} n \frac{\cos (n k a)-1}{|n|^{\alpha}} . \tag{13}
\end{equation*}
$$

\]

Justify this approximation. Next, do a change of variable in the integral to $z=n k a$. Without analytically evaluating the integral, explain why as $|k| \rightarrow 0$,

$$
\begin{equation*}
E(k) \approx E(0)+2 h \times C_{\alpha}|k|^{\alpha-1} . \tag{14}
\end{equation*}
$$

where C_{α} is a constant that depends on α (you do not need to compute it).
(f) Information propagates at a finite speed so long as the group velocity of waves is finite. Using the dispersion relation (14), show that for $\alpha>2$, information travels at a finite speed. ${ }^{3}$
[1] M. C. Tran, C-F. Chen, A. Ehrenberg, A. Y. Guo, A. Deshpande, Y. Hong, Z-X. Gong, A. V. Gorshkov and A. Lucas. "Hierarchy of linear light cones with long-range interactions", Physical Review X10 031009 (2020), arXiv:2001.11509.

[^2]
[^0]: ${ }^{1}$ Hint: The answer is given in Lecture 11 - scan through the recorded lecture if you need to!

[^1]: ${ }^{2}$ Hint: You can make a sketch as follows. What are the eigenvalues $E(\theta)$ at $\theta=0$; what about $\theta=\pi / 2$? Sketch two bands that connect these two points (for each band) together. Repeat for negative θ.

[^2]: ${ }^{3}$ For a rigorous demonstration of this result for more general Hamiltonians, see Theorem 9 of [1].

