Homework 9

Due: 11:59 PM, Tuesday, November 3. Submit your homework via Canvas.
Grading: 30 points required for full credit. 30 points are possible.
10 points Problem 1: Consider two coupled and distinguishable spin- $\frac{1}{2}$ particles with Hamiltonian

$$
\begin{equation*}
H=b_{1} \frac{2 S_{1 z}}{\hbar}+b_{2} \frac{2 S_{2 z}}{\hbar}+\frac{4 \epsilon}{\hbar^{2}}\left(S_{1 z} S_{2 z}+S_{1 x} S_{2 x}\right) . \tag{1}
\end{equation*}
$$

Assume that ϵ is perturbatively small, and $b_{1} \neq b_{2}$.
(a) Find the eigenvalues of H when $\epsilon=0$.
(b) Calculate the eigenvalues and eigenvectors of H to first order in ϵ.
(c) Use second order perturbation theory to calculate the eigenvalues of H to second order in ϵ.

Problem 2 (Dissociation of the hydrogen molecule): We stated earlier in this class that the harmonic oscillator could be a good approximation for a chemical bond in a diatomic molecule, such as H_{2}. Consider the following oscillator model for such a bond:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}-\gamma x^{3}+\cdots \tag{2}
\end{equation*}
$$

We solved this problem exactly when $\gamma=0$. Now, let us solve this problem with perturbation theory when γ is "small".
5 points (a) Use dimensional analysis to determine the SI units of the parameter γ. Build a quantity with the same units as γ out of m, \hbar and ω : i.e. $m^{a} \hbar^{b} \omega^{c}$ (what are a, b, c ?). Then estimate how small γ must be for perturbation theory to be a sensible approximation method.

10 points
(b) Use first and second order perturbation theory to show that the $n^{\text {th }}$ energy level of H is approximately ${ }^{1}$

$$
\begin{equation*}
E_{n} \approx \hbar \omega\left(n+\frac{1}{2}\right)-\frac{\hbar^{2} \gamma^{2}}{8 m^{3} \omega^{4}}\left(11+30 n+30 n^{2}\right)+\cdots \tag{3}
\end{equation*}
$$

Is your argument from part (a) reasonable?
5 points (c) The result of part (b) suggests that we can estimate the energy scale at which H_{2} would break apart (the dissociation energy) by fitting the discrete energy levels E_{n} measured in the actual H_{2} molecular bond to a quadratic function of the parameter n (treat it as continuous for this part), and looking for the maximum value of this fitting function. The energy levels of the H_{2} bond are

$$
\begin{equation*}
E=0.52,1.00,1.46,1.89,2.29,2.67,3.01,3.33,3.61,3.86,4.08,4.25,4.38,4.46 \mathrm{eV} \tag{4}
\end{equation*}
$$

(The first entry in this list is E_{0}, the second is E_{1}, and so on.) Estimate the dissociation energy of this bond, and compare to the experimental value of 4.52 eV .

[^0]
[^0]: ${ }^{1}$ Hint: First express x in terms of raising and lowering operators.

