Physics 4410 Quantum Mechanics 2

Lecture 14

Metals and insulators

September 25, 2020

Activity 1: Solid with two bands

Consider an electron hopping in a one dimensional metal with

$$H = \sum_{n=-\infty}^{\infty} \left[\left(\alpha + \gamma(-1)^n \right) |n\rangle \langle n| - \beta |n\rangle \langle n+1| - \beta |n+1\rangle \langle n| \right].$$

This is a toy model for an electron moving in an atomic chain of alternating atoms: $XYXY\cdots$. Why?

Consider an electron hopping in a one dimensional metal with

$$H = \sum_{n=-\infty}^{\infty} \left[\left(\alpha + \gamma(-1)^n \right) |n\rangle \langle n| - \beta |n\rangle \langle n+1| - \beta |n+1\rangle \langle n| \right].$$

(a) Show that $[H, T_2] = 0$.

(b) Use Bloch's Theorem to reduce the problem of diagonalizing H to diagonalizing a 2×2 matrix.

(c) Find the eigenvalues of H. Plot them in an appropriate Brillouin zone.

1. Describe how a Fermi gas of electrons occupies the bands of a real solid.

2. Describe when we have a metal, and when we have an insulator.

Activity 2: Criterion for band insulators.

Suppose I have a lattice model with $[H, T_2] = 0$, and 1/3 of the allowed electronic states are occupied. Is this a metal or an insulator?