## Physics 4410 Quantum Mechanics 2

## Lecture 15

## **Review: rotational symmetry**

October 2, 2020

**1.** Describe how to solve spherically symmetric problems.

**2.** Describe the angular momentum algebra.

**3.** What are the eigenvectors/eigenvalues of  $\mathbf{L}^2$  and  $L_z$ ?

## Activity: Buckyball.

A buckyball is a 60-carbon molecule that we can approximate as a sphere of radius R. The Hamiltonian of an electron moving on the buckyball can be approximated as



(a) Find the eigenvalues of *H*, along with their degeneracies.

(b) If each carbon atom contributes one mobile (non-interacting) electron (described by *H*), describe the ground state of the buckyball.

(c) The longest wavelength photon absorbed by the buckyball is  $\lambda \approx 4 \times 10^{-7}$  m. Using  $m_{\rm e} \approx 10^{-30}$  kg,  $\hbar \approx 10^{-34}$  J·s, and  $c \approx 3 \times 10^8$  m/s, determine the radius of the buckyball.