Physics 4410 Quantum Mechanics 2

Lecture 17

The hyperfine interaction

October 7, 2020

Activity: The hyperfine interaction.

Explain why there is a small interaction between the spin- $\frac{1}{2}$ s of the proton and electron in hydrogen:

$$H = \frac{A}{\hbar^2} \mathbf{S} \cdot \mathbf{I}.$$

(a) Describe the Hilbert space of the coupled electron/proton spins.

(b) Write down the matrices S_x , S_y , S_z , I_x , I_y , I_z .

(c) Write down H as a 4×4 matrix. What are its eigenvalues?

(d) Define $\mathbf{F} = \mathbf{S} + \mathbf{I}$. Show that \mathbf{F} obeys the angular momentum algebra.

(e) What is \mathbf{F}^2 ? (Relate it to H.)

(f) Explain the triple degeneracy of the hyperfine Hamiltonian.

(g) Given that $A = 9 \times 10^{-25}$ J in hydrogen, find the wavelength of light that is absorbed by the hyperfine transitions in the ground state of hydrogen.