Physics 4410
 Quantum Mechanics 2

Lecture 18

Addition of angular momentum

October 9, 2020

1. Consider angular momentum operators \mathbf{J}_{1} and \mathbf{J}_{2} associated with two different spins. Define $\mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2}$.
2. Explain

$$
\frac{1}{2} \otimes \frac{1}{2}=0 \oplus 1 .
$$

3. Explain

$$
j_{1} \otimes j_{2}=\left|j_{1}-j_{2}\right| \oplus\left(\left|j_{1}-j_{2}\right|+1\right) \oplus \cdots \oplus\left(j_{1}+j_{2}\right)
$$

4. A heuristic argument for $1 \otimes 1=0 \oplus 1 \oplus 2$ comes from considering vector "multiplication".

Activity 1: Spin-orbit coupling.

In many atoms (and solids) the Hamiltonian for an electron contains the following coupling between orbital (L) and spin (S) angular momentum:

$$
H=\mathbf{L} \cdot \mathbf{S} .
$$

(a) Suppose that the electron has total orbital angular momentum l. Describe the Hilbert space $\left|l l_{z}, s s_{z}\right\rangle$ in the "coupled basis".
(b) Describe the spectrum of H along with degeneracies.

Activity 2: Adding three angular momenta.

Suppose we have three spin 1 particles. Describe the total Hilbert space in the uncoupled basis, and in the coupled basis: how many effective spin j s are there (for each j)?

