Physics 4410
 Quantum Mechanics 2

Lecture 19

Clebsch-Gordan coefficients

October 12, 2020

1. Review the addition of angular momenta.
2. What are the Clebsch-Gordan coefficients? Explain how to go from uncoupled to coupled bases, or vice versa.

Activity: Decay of unstable particles.

In particle physics, there is an "isospin" (see Homework 7) which is added via angular momentum addition. Particles with net isospin $\frac{3}{2}$ are called $\Delta \mathrm{s}$. We can distinguish between particles of different z-isospin J_{z} by their electric charge.
(a) How many Δ particles do we expect? (What is the dimension of the Hilbert space at $j=\frac{3}{2}$?)
(b) $\Delta \mathrm{s}$ are unstable and will decay into isospin $j_{1}=\frac{1}{2}$ and $j_{2}=1$ particles. If we take the Hilbert space of these two species of particles, $\frac{1}{2} \otimes 1$, what do we get?
(c) We want to find the Clebsch-Gordan coefficients. Let's start with something easy - how can we write the coupled state $\left|j=\frac{3}{2}, m=-\frac{3}{2}\right\rangle$ in the uncoupled basis?
(d) Apply the raising operator to generate $\left|j=\frac{3}{2}, m\right\rangle$.
(e) Use orthogonality to find the states $\left|j=\frac{1}{2}, m\right\rangle$.
(f) A crude model for $\Delta\left(\left|j=\frac{3}{2}, m\right\rangle\right)$ decay is that we simultaneously measure $J_{1 z}$ and $J_{2 z}$. Predict the relative decay rates for all possible Δ particle decays. These results have been confirmed beautifully in experiment.

