Physics 4410 Quantum Mechanics 2

Lecture 26

Time-independent perturbation theory: non-degenerate, second order

October 28, 2020

1. Review first order perturbation theory.

2. Write down an equation for second order corrections.

Activity 1: Consider the following Hamiltonian:

$$H = \left(\begin{array}{rrr} a & \epsilon & 0 \\ \epsilon & 0 & \epsilon \\ 0 & \epsilon & b \end{array}\right).$$

(a) Calculate the eigenvalues of H to first order in ϵ .

Consider the following Hamiltonian:

$$H = \left(\begin{array}{rrr} a & \epsilon & 0\\ \epsilon & 0 & \epsilon\\ 0 & \epsilon & b \end{array}\right).$$

(b) Calculate the eigenvalues of H to second order in ϵ .

Consider the following Hamiltonian:

$$H = \left(\begin{array}{ccc} a & \epsilon & 0\\ \epsilon & 0 & \epsilon\\ 0 & \epsilon & b \end{array}\right).$$

(c) Do you think your answer breaks down if a = b? What if a = 0?

Activity 2: Show that second order perturbation theory always decreases the energy of the ground state.