Physics 4410 Quantum Mechanics 2

Lecture 38

The adiabatic theorem

December 4, 2020

Activity (teaser): Quantum annealing.

One of the immediate commercial applications of quantum mechanics is the solution of hard math (combinatorics) problems via quantum annealing. (How "quantum" existing devices are is a contentious question!) Describe how to solve the graph coloring problem on a toy quantum annealer.

1. State the adiabatic theorem in quantum mechanics.

2. Sketch the proof of the adiabatic theorem.

3. Estimate how slow H(t) needs to change to be adiabatic.

Activity: Quantum annealing.

We can estimate the behavior of quantum annealers with a crude 2-state model:

Argue that the time a quantum annealer needs to spend to solve a hard problem of N spins scales as $\tau \sim \exp[cN]$, for some constant c.