Exam 1

- This exam is open book and open notes. You are not allowed to use any electronic devices besides a calculator, nor allowed to communicate at all about the questions on the exam with any other students for 24 hours after the exam ends.
- You have 2 hours to complete this exam (unless Disability Services has authorized a request for extended time: 50% extra time is 3 hours, 100% extra time is 4 hours). Good luck!

Problem 1: Consider a quantum harmonic oscillator (you can set $m=\hbar=\omega=1$ if you want to) in the initial state

$$
\begin{equation*}
|\psi(0)\rangle=\frac{|1\rangle-|3\rangle}{\sqrt{2}}, \tag{1}
\end{equation*}
$$

where $|n\rangle$ denotes the $n^{\text {th }}$ excited state of the oscillator.

A: What is the time-evolved wave function $|\psi(t)\rangle$?
B: Calculate the uncertainty in position as a function of time:

$$
\begin{equation*}
\Delta x(t)=\sqrt{\langle\psi(t)| x^{2}|\psi(t)\rangle-\langle\psi(t)| x|\psi(t)\rangle^{2}} . \tag{2}
\end{equation*}
$$

Problem 2: Consider the two-dimensional harmonic oscillator

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}+\frac{1}{2} m \omega_{1}^{2} x_{1}^{2}+\frac{1}{2} m \omega_{2}^{2} x_{2}^{2} . \tag{3}
\end{equation*}
$$

A: What are the eigenvalues of H ?
B: Now, suppose that x_{1} and x_{2} should represent the positions of two indistinguishable spin-0 quantum mechanical particles, each placed in the same physical one-dimensional potential.

B1. Why must we take $\omega_{1}=\omega_{2}$ in order to interpret the particles as indistinguishable?
B2. Write down an explicit wave function for the ground state in bra-ket notation, and in terms of a wave function that depends on x_{1} and/or x_{2}. (You can use $\psi_{n}(x)$ to denote the energy states of the 1 d oscillator.)
B3. What is the smallest eigenvalue of H which is degenerate? Write down all degenerate eigenvectors for this energy.

C: Repeat part B, now assuming the particles are spin- $\frac{1}{2}$, and assuming that H does not depend on spin.
C1. Write down an explicit wave function for the ground state.
C2. What is the smallest eigenvalue of H which is degenerate? Write down all degenerate eigenvectors for this energy.

Problem 3: Consider two indistinguishable spin- 0 particles, each of which can occupy 3 states: $|1\rangle,|2\rangle$, $|3\rangle$. For constant $\epsilon>0$, define the single-particle Hamiltonian

$$
\begin{equation*}
H_{0}=\epsilon|1\rangle\langle 1|+2 \epsilon|2\rangle\langle 2|+3 \epsilon|3\rangle\langle 3| . \tag{4}
\end{equation*}
$$

B: Repeat for $Z=2$, i.e. X is He (helium). Do you predict He_{2} is more stable than He ? Is the model very good?

Figure 1: Toy model for the energies of atoms vs. molecules.

Problem 5: Consider a quantum mechanical particle in two dimensions described by the Hamiltonian

$$
\begin{equation*}
H=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+\frac{k}{4}\left(x^{4}+y^{4}\right) . \tag{6}
\end{equation*}
$$

5 A: There are "3 different parity symmetries" of H; namely, three (independent) transformations $P_{1,2,3}$, each of which obeys the necessary relations to be a "parity symmetry". What are $P_{1,2,3}$? For example, you may wish to state the wave function $P_{1} \psi(x, y)$ etc.

B: Another system with " 3 different parity symmetries" is the following three dimensional model:

$$
\begin{equation*}
H=\frac{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2 m}+a x^{2}+b y^{4}+c z^{6} . \tag{7}
\end{equation*}
$$

Do you expect Hamiltonians (6) and (7) to have the same symmetry group? Why or why not?
10 Problem 6: Consider a spin- $\frac{1}{2}$ particle, trapped in a harmonic oscillator potential, with the following Hamiltonian (we have set $\hbar=m=\omega=1$ in this problem):

$$
\begin{equation*}
H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2}+\lambda x \sigma^{x} \tag{8}
\end{equation*}
$$

The last term explicitly couples the spin of the particle to its position: here $\sigma^{x}=|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow|$ flips the spin of the electron from up to down and vice versa.

Find the eigenvalues of H.

[^0]
[^0]: ${ }^{1}$ Hint: Do the eigenstates of H differ between parts \mathbf{A} and \mathbf{B} ?

