Exam 2

- This exam is open book and open notes. You are not allowed to use any electronic devices besides a calculator, nor allowed to communicate at all about the questions on the exam with any other students for 24 hours after the exam ends.
- You have 2 hours to complete this exam (unless Disability Services has authorized a request for extended time: 50% extra time is 3 hours, 100% extra time is 4 hours). Good luck!

Problem 1: Consider a particle of spin $j_{1}=\frac{3}{2}$, and a particle of spin $j_{2}=1$. The angular momentum operators for each of these will be denoted as \mathbf{J}_{1} and \mathbf{J}_{2}.

A: Consider the trial wave function

$$
\psi(x)=\left\{\begin{array}{ll}
A x(L-x) & 0 \leq x \leq L \tag{4}\\
0 & \text { otherwise }
\end{array} .\right.
$$

A1. Find the normalization constant A.
A2. Use the variational principle with this as a trial wave function: namely, evaluate $\langle\psi| H|\psi\rangle$ and obtain a bound on the ground state energy.
A: What is $\frac{3}{2} \otimes 1$ equal to? Explain what the physical importance of this is, in a few sentences.
B: Show that in the coupled basis, the state

$$
\begin{equation*}
\left|\frac{3}{2} \frac{3}{2}\right\rangle=\sqrt{\frac{3}{5}}\left|\frac{3}{2} \frac{3}{2} 10\right\rangle-\sqrt{\frac{2}{5}}\left|\frac{3}{2} \frac{1}{2} 11\right\rangle . \tag{1}
\end{equation*}
$$

You cannot consult a table of Clebsch-Gordan coefficients; explain how this result can be derived!
C: Let $A>0$ be a constant. Suppose that these two particles interacted with Hamiltonian

$$
\begin{equation*}
H=A \mathbf{J}_{1} \cdot \mathbf{J}_{2} \tag{2}
\end{equation*}
$$

C1. Explain why the state in (1) would be an eigenstate of H. What is its eigenvalue E ?
$C 2$. What is the degeneracy of energy E, for Hamiltonian H ?
Problem 2: Consider a particle in the infinite square well, with Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V(x), \quad V(x)=\left\{\begin{array}{ll}
0 & 0 \leq x \leq L \tag{3}\\
\infty & \text { otherwise }
\end{array} .\right.
$$

value? Give an explicit formula for your answer, and explain. in a one-dimensional lattice:

$$
\begin{equation*}
H=-\sum_{n=-\infty}^{\infty}(a[|n+2\rangle\langle n|+|n\rangle\langle n+2|]+b[|n+3\rangle\langle n|+|n\rangle\langle n+3|]) \tag{5}
\end{equation*}
$$

1. If R is the discrete translation operator (Lecture 11), show that $[H, R]=0$.
2. Deduce the eigenvalues and eigenvectors of H.

Problem 4: Consider a particle moving on a sphere, with orbital angular momentum vector \mathbf{L}, and Hamiltonian (here $A>0$ is a real constant)

$$
\begin{equation*}
H=A \mathbf{L}^{2}+3 \hbar A L_{x} \tag{6}
\end{equation*}
$$

15 A: What are the eigenvalues of H ?
B: Find the ground state wave function in the basis $|l m\rangle$, where l is the total orbital angular momentum, and $L_{z}|l m\rangle=\hbar m|l m\rangle$. This is the standard basis discussed in, e.g., Lecture 15.

Problem 5: Find the eigenvalues of the following Hamiltonian:

$$
H=\left(\begin{array}{llllllll}
3 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \tag{7}\\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

