
PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 1

Due: January 26 at 11:59 PM. Submit on Canvas.

Problem 1 (Superfluidity): As discussed in Lecture 1, the actual interaction between two atoms is a
rather complicated function, which can be well approximated by a harmonic oscillator near its minimum.
To ensure that algebra is tractable, let us suppose that the interaction potential between atoms is a rather
peculiar function:

V (x) = U

[(a
x

)8
−
(a
x

)5]
. (1)

Here a ≈ 10−10 m is an atomic length scale, while U ≈ 2× 10−23 J is the energy scale of binding between
the neutral atoms. In this problem, assume that the coordinate x > 0. The Hamiltonian of the system is

H =
p2

2m
+ V (x). (2)

A:20 Let us first postulate that it is reasonable to approximate the minimum of the potential well with a
harmonic oscillator.

A1. Find the location, x0, at which V (x) has a local minimum. Show that x0 = c1a, where c1 > 0 is
a dimensionless constant (such as 2,

√
3, π, etc.).

A2. What is V (x0)? Show that V (x0) = −c2U , where c2 > 0 is a dimensionless constant.

A3. Next, Taylor expand

V (x) ≈ V (x0) +
k

2
(x− x0)2, (3)

and determine the constant k = c3U/a
2. (Again, c3 is dimensionless.)

A4. If (3) was exact, what would be the ground state energy of the quantum system?1

B:15 When your answer to A4 is that the ground state energy is close to (or above!) 0, the approximation
(3) breaks down. In this limit, it’s better to instead do a heuristic analysis following Lecture 1.

B1. In the ground state, why might we estimate that

∆p2 ∼ ~2

4∆x2
? (4)

B2. Following Lecture 1, look for the minimum of H(∆x) using calculus, and the “exact” model for
V (x) given in (1). Show that there is a critical mass mc, such that if m < mc, there are no
minima of H(∆x) at finite ∆x, and hence the atoms will not bind together.

1Hint: Plug in (3) into (2). You can quote the ground state energy of the harmonic oscillator, but you need to shift the
answer by V (x0), and convert from the parameters in this problem to those from Lecture 2.
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C:5 The lightest two long-lived bosonic nuclei, which are unlikely to form chemical bonds (either amongst
themselves or with other elemental atoms), are helium-4 (m ≈ 4m0) and neon-20 (m ≈ 20m0), where
m0 ≈ 2× 10−27 kg is the mass of the proton. By numerically evaluating mc given the estimates for U
and a, argue that there will be no bound state for helium-4 atoms, while there would be for neon.

D:5 If you’re still interested, go back and plot H(∆x) as a function of increasing m. Do you think that mc

is actually the mass where the atoms prefer to be far separated, or is there a larger m′c > mc where
the atoms prefer to be unbound?

At ultra-low temperatures when quantum mechanical effects become important, an absence of any bound
states suggests that the helium atoms will form a collective condensate where individual atoms are delo-
calized on macroscopic length scales. The resulting phase of matter is called a superfluid, and is indeed
realized in helium-4 at low temperature! In contrast, neon becomes a solid upon cooling.

Problem 2 (Covalent bond): An extremely important system that can be modeled accurately by a simple
harmonic oscillator is the chemical bond in a diatomic molecule A2, with A = H, N, F, O, etc. If the A
atom has mass m, then the Hamiltonian describing the simple harmonic oscillator is

H =
p2

m
+

1

4
mω2x2. (5)

The funny constant factors above are deliberate, and arise because the harmonic oscillation describes the
relative motion of the two atoms.

A:15 Let |0〉 denote the ground state of this
oscillator. Evaluate the “size” D of
this oscillator in the ground state, and
show that

D =
√
〈0|x2|0〉 =

√
~
mω

. (6)

A atom m (10−27 kg) ω (1012 Hz) L (10−10 m)

H 1.7 827 0.7
N 23.4 438 1.1
Cl 58.5 104 2.0
Br 132 61 2.3

Figure 1: (Rough) experimental values of m, ω, and L for simple
diatomic molecules.

B:10 The data in Figure 1 lists the experimentally determined bond length L of the covalent bond in the
A2 molecule. Is D or L larger? Does your answer make physical sense?

Problem 3 (Squeezed state): It is crucial that the ground state of the harmonic oscillator has ∆x > 0
to have consistency with quantum mechanics. Still, it is possible to find states that have ∆x below the
ground state value. These states are called squeezed. They often play a valuable role in quantum sensing
experiments and (future) technology.

A:20 An example of a state which can be squeezed is

|ψ〉 = α|0〉+ β|2〉. (7)

A1. Use raising and lowering operators to evaluate ∆x =
√
〈ψ|x2|ψ〉 − 〈ψ|x|ψ〉2, assuming that the

state is normalized (|α|2 + |β|2 = 1), but otherwise arbitrary.

A2. Find choices of α and β which minimize

∆x =
√
〈ψ|x2|ψ〉 − 〈ψ|x|ψ〉2. (8)

Show that the minimum value is below what it would be in the ground state (α = 1, β = 0). You
can do this numerically, not analytically, as long as your solution shows clear understanding.
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B:15 If we start an oscillator in the initial state |ψ〉 above, we can then ask about its time evolution.

B1. Determine |ψ(t)〉. Explain why it always takes the form of (7), but with time dependent param-
eters α(t) and β(t).

B2. Describe what happens to ∆x as a function of time. Is the squeezing of |ψ(0)〉 robust?

Problem 4 (Bogoliubov transformation):20 In the emergent descriptions of superfluids or superconductors,
one often finds (many-particle generalizations of) Hamiltonians of the form

H = εa†a− η
(
a†a† + aa

)
. (9)

where a†/a are creation/annihilation operators of a harmonic oscillator: [a, a†] = 1. Take ε > 0 and η > 0
to be real. Interestingly, if η is not too large, you can exactly solve this problem.

1. The Bogoliubov transformation defines a new set of creation/annihilation operators b† and b:

b = a coshα− a† sinhα, (10a)

b† = a† coshα− a sinhα. (10b)

Here sinh and cosh are the hyperbolic trigonometric functions (which you can read about online if you
aren’t familiar). Show that b and b† obey the “correct” commutation relation:

[b, b†] = 1. (11)

2. In one or two sentences, explain how to find the eigenvalues of

H0 = Jb†b, (12)

where J is some constant.

3. Show that for a clever choice of α, if you write (9) in terms of b and b†, it looks similar to the form
(12). Thus determine the spectrum of the original Hamiltonian exactly, and determine the maximal
value of η for which a solution exists.

4. Let |n〉 denote the original oscillator eigenstates: i.e. a†a|n〉 = n|n〉. Find the ground state of H, as
given in (9), in terms of the |n〉 basis.
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