Homework 1

Due: January 26 at 11:59 PM. Submit on Canvas.

Problem 1 (Superfluidity): As discussed in Lecture 1, the actual interaction between two atoms is a rather complicated function, which can be well approximated by a harmonic oscillator near its minimum. To ensure that algebra is tractable, let us suppose that the interaction potential between atoms is a rather peculiar function:

$$
\begin{equation*}
V(x)=U\left[\left(\frac{a}{x}\right)^{8}-\left(\frac{a}{x}\right)^{5}\right] . \tag{1}
\end{equation*}
$$

Here $a \approx 10^{-10} \mathrm{~m}$ is an atomic length scale, while $U \approx 2 \times 10^{-23} \mathrm{~J}$ is the energy scale of binding between the neutral atoms. In this problem, assume that the coordinate $x>0$. The Hamiltonian of the system is

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V(x) \tag{2}
\end{equation*}
$$

A: Let us first postulate that it is reasonable to approximate the minimum of the potential well with a harmonic oscillator.

A1. Find the location, x_{0}, at which $V(x)$ has a local minimum. Show that $x_{0}=c_{1} a$, where $c_{1}>0$ is a dimensionless constant (such as $2, \sqrt{3}, \pi$, etc.).
A2. What is $V\left(x_{0}\right)$? Show that $V\left(x_{0}\right)=-c_{2} U$, where $c_{2}>0$ is a dimensionless constant.
A3. Next, Taylor expand

$$
\begin{equation*}
V(x) \approx V\left(x_{0}\right)+\frac{k}{2}\left(x-x_{0}\right)^{2} \tag{3}
\end{equation*}
$$

and determine the constant $k=c_{3} U / a^{2}$. (Again, c_{3} is dimensionless.)
A4. If (3) was exact, what would be the ground state energy of the quantum system? ${ }^{1}$
B: When your answer to A4 is that the ground state energy is close to (or above!) 0, the approximation (3) breaks down. In this limit, it's better to instead do a heuristic analysis following Lecture 1.

B1. In the ground state, why might we estimate that

$$
\begin{equation*}
\Delta p^{2} \sim \frac{\hbar^{2}}{4 \Delta x^{2}} ? \tag{4}
\end{equation*}
$$

B2. Following Lecture 1, look for the minimum of $H(\Delta x)$ using calculus, and the "exact" model for $V(x)$ given in (1). Show that there is a critical mass m_{c}, such that if $m<m_{\mathrm{c}}$, there are no minima of $H(\Delta x)$ at finite Δx, and hence the atoms will not bind together.

[^0]5 C: The lightest two long-lived bosonic nuclei, which are unlikely to form chemical bonds (either amongst themselves or with other elemental atoms), are helium-4 ($m \approx 4 m_{0}$) and neon-20 ($m \approx 20 m_{0}$), where $m_{0} \approx 2 \times 10^{-27} \mathrm{~kg}$ is the mass of the proton. By numerically evaluating m_{c} given the estimates for U and a, argue that there will be no bound state for helium- 4 atoms, while there would be for neon.

5 D: If you're still interested, go back and plot $H(\Delta x)$ as a function of increasing m. Do you think that m_{c} is actually the mass where the atoms prefer to be far separated, or is there a larger $m_{\mathrm{c}}^{\prime}>m_{\mathrm{c}}$ where the atoms prefer to be unbound?

At ultra-low temperatures when quantum mechanical effects become important, an absence of any bound states suggests that the helium atoms will form a collective condensate where individual atoms are delocalized on macroscopic length scales. The resulting phase of matter is called a superfluid, and is indeed realized in helium-4 at low temperature! In contrast, neon becomes a solid upon cooling.

Problem 2 (Covalent bond): An extremely important system that can be modeled accurately by a simple harmonic oscillator is the chemical bond in a diatomic molecule A_{2}, with $\mathrm{A}=\mathrm{H}, \mathrm{N}, \mathrm{F}, \mathrm{O}$, etc. If the A atom has mass m, then the Hamiltonian describing the simple harmonic oscillator is

$$
\begin{equation*}
H=\frac{p^{2}}{m}+\frac{1}{4} m \omega^{2} x^{2} . \tag{5}
\end{equation*}
$$

The funny constant factors above are deliberate, and arise because the harmonic oscillation describes the relative motion of the two atoms.

A: Let $|0\rangle$ denote the ground state of this oscillator. Evaluate the "size" D of this oscillator in the ground state, and show that

$$
\begin{equation*}
D=\sqrt{\langle 0| x^{2}|0\rangle}=\sqrt{\frac{\hbar}{m \omega}} . \tag{6}
\end{equation*}
$$

A atom	$m\left(10^{-27} \mathrm{~kg}\right)$	$\omega\left(10^{12} \mathrm{~Hz}\right)$	$L\left(10^{-10} \mathrm{~m}\right)$
H	1.7	827	0.7
N	23.4	438	1.1
Cl	58.5	104	2.0
Br	132	61	2.3

Figure 1: (Rough) experimental values of m, ω, and L for simple diatomic molecules.

B: The data in Figure 1 lists the experimentally determined bond length L of the covalent bond in the A_{2} molecule. Is D or L larger? Does your answer make physical sense?

Problem 3 (Squeezed state): It is crucial that the ground state of the harmonic oscillator has $\Delta x>0$ to have consistency with quantum mechanics. Still, it is possible to find states that have Δx below the ground state value. These states are called squeezed. They often play a valuable role in quantum sensing experiments and (future) technology.

A: An example of a state which can be squeezed is

$$
\begin{equation*}
|\psi\rangle=\alpha|0\rangle+\beta|2\rangle . \tag{7}
\end{equation*}
$$

A1. Use raising and lowering operators to evaluate $\Delta x=\sqrt{\langle\psi| x^{2}|\psi\rangle-\langle\psi| x|\psi\rangle^{2}}$, assuming that the state is normalized $\left(|\alpha|^{2}+|\beta|^{2}=1\right)$, but otherwise arbitrary.
A2. Find choices of α and β which minimize

$$
\begin{equation*}
\Delta x=\sqrt{\langle\psi| x^{2}|\psi\rangle-\langle\psi| x|\psi\rangle^{2}} . \tag{8}
\end{equation*}
$$

Show that the minimum value is below what it would be in the ground state ($\alpha=1, \beta=0$). You can do this numerically, not analytically, as long as your solution shows clear understanding.

B: If we start an oscillator in the initial state $|\psi\rangle$ above, we can then ask about its time evolution.
B1. Determine $|\psi(t)\rangle$. Explain why it always takes the form of (7), but with time dependent parameters $\alpha(t)$ and $\beta(t)$.
B2. Describe what happens to Δx as a function of time. Is the squeezing of $|\psi(0)\rangle$ robust?
20 Problem 4 (Bogoliubov transformation): In the emergent descriptions of superfluids or superconductors, one often finds (many-particle generalizations of) Hamiltonians of the form

$$
\begin{equation*}
H=\epsilon a^{\dagger} a-\eta\left(a^{\dagger} a^{\dagger}+a a\right) \tag{9}
\end{equation*}
$$

where a^{\dagger} / a are creation/annihilation operators of a harmonic oscillator: $\left[a, a^{\dagger}\right]=1$. Take $\epsilon>0$ and $\eta>0$ to be real. Interestingly, if η is not too large, you can exactly solve this problem.

1. The Bogoliubov transformation defines a new set of creation/annihilation operators b^{\dagger} and b :

$$
\begin{align*}
b & =a \cosh \alpha-a^{\dagger} \sinh \alpha \tag{10a}\\
b^{\dagger} & =a^{\dagger} \cosh \alpha-a \sinh \alpha \tag{10b}
\end{align*}
$$

Here sinh and cosh are the hyperbolic trigonometric functions (which you can read about online if you aren't familiar). Show that b and b^{\dagger} obey the "correct" commutation relation:

$$
\begin{equation*}
\left[b, b^{\dagger}\right]=1 \tag{11}
\end{equation*}
$$

2. In one or two sentences, explain how to find the eigenvalues of

$$
\begin{equation*}
H_{0}=J b^{\dagger} b \tag{12}
\end{equation*}
$$

where J is some constant.
3. Show that for a clever choice of α, if you write (9) in terms of b and b^{\dagger}, it looks similar to the form (12). Thus determine the spectrum of the original Hamiltonian exactly, and determine the maximal value of η for which a solution exists.
4. Let $|n\rangle$ denote the original oscillator eigenstates: i.e. $a^{\dagger} a|n\rangle=n|n\rangle$. Find the ground state of H, as given in (9), in terms of the $|n\rangle$ basis.

[^0]: ${ }^{1}$ Hint: Plug in (3) into (2). You can quote the ground state energy of the harmonic oscillator, but you need to shift the answer by $V\left(x_{0}\right)$, and convert from the parameters in this problem to those from Lecture 2 .

