
PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 10

Due: April 20 at 11:59 PM. Submit on Canvas.

Problem 1: Consider an alternate universe where we replace the dipole interaction between non-relativistic
quantum systems and electromagnetic radiation, with a more generic kind of interaction V (r), such that
the spontaneous emission rate of photons between energy levels Ei > Ef becomes:

Rse
i→f =

ω3
if

πε0~c3
|〈f|V |i〉|2. (1)

A:20 Suppose that the interaction

V = C
(
x2 − y2

)
. (2)

A1. Explain why this interaction V contains spherical harmonics with l = 2 and m = ±2.1

A2. Follow Lecture 32 and argue that the selection rules for this interaction are (at least as strict as)
∆l = 0, 1, 2, ∆m = ±2.

A3. What is the lowest energy state of hydrogen that can decay to the ground state |100〉? Explain
what these states are, but do not calculate their lifetime!

B:20 Now, consider the perturbation

V = gr2. (3)

B1. What are the selection rules in this case?

B2. Show that there is a single n = 2 level of hydrogen that could decay to |100〉.
B3. Take the state that is allowed to decay to |100〉, and calculate the time scale over which sponta-

neous emission would occur.

Problem 2:20 Consider the time-dependent Hamiltonian H(t) = H0 + V (t), with

H0 =

 A 0 0
0 2A 0
0 0 3A

 , (4a)

V (t) =

 ε iε 0
−iε 4ε 3ε
0 3ε −ε

 e−t/τ . (4b)

If the initial wave function is |ψ(0)〉 = |1〉, what is the probability of finding the particle in each of the
three eigenstates of H0 at t = ∞. Use first-order time-dependent perturbation theory to provide your
answer.

1Hint: You may find it helpful to look up results from McIntyre Chapter 7.
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Problem 3 (Greenhouse gases): Greenhouse gases are molecules that, when in the gaseous atmosphere,
interact strongly with thermal electromagnetic radiation emitted by the finite temperature surface of the
Earth. To understand what molecules have strong interactions, recall that we have seen that fluctuations
of the length of a covalent bond in a molecule are well approximated by a quantum harmonic oscillator.

In a molecule, we really have to study coupled harmonic oscillators associated with the individual
motions of each atom. In this problem, you will be provided the solution to the coupled oscillator
problem for two different relevant molecules.

A:20 Before talking about molecules, however, let us discuss what happens for a single harmonic oscillator:

H0 =
p2

2m
+

1

2
mΩ2x2. (5)

Take the dipole moment operator to be p = αx. Describe the possible interactions of this oscillator
with electromagnetic radiation within the electric dipole approximation (Lecture 31).

A1. Suppose that the initial state is the oscillator ground state |0〉. Show that the absorption rate of
photons of frequency Ω is given by

R = ρ(Ω)× πα2

6ε0~mΩ
. (6)

A2. Into what states can the oscillator be excited, if it starts in |0〉?
A3. If the oscillator starts in any other state |n〉, is there any other frequency of photons (besides Ω)

that will be absorbed?

B:10 On Homework 2, we discussed the normal modes of the carbon dioxide (CO2) molecule. CO2 is a
greenhouse gas, meaning that it interacts efficiently with electromagnetic radiation. Let us see why.
Consider the motion of the three atoms in a single line: let x0 denote the position of the carbon atom,
while x± denote the positions of the oxygens on either side. The dipole operator is

p = αO (x+ + x−) + αCx0. (7)

If X1,2,3 denote the position operators for CO2 normal modes, we found on Homework 2 that

x− = X1 −X2 +X3, (8a)

x0 = X1 −
2mO

mC
X3, (8b)

x+ = X1 +X2 +X3. (8c)

If k is the spring constant of the C-O covalent bond, the normal mode frequencies are

Ω1 = 0, (9a)

Ω2 =
k

mO
, (9b)

Ω3 = k

(
1

mO
+

2

mC

)
. (9c)

B1. Express p in terms of X1,2,3.

B2. Model the interaction of the molecule with radiation by sequentially assuming that only X1 6= 0
(while X2 = X3 = 0), and then “turning on” the other two normal modes. Combine the results
of A1 and B1, and the fact that ρ(0) = 0, to show R 6= 0 only for the X3 mode.
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B3. Using mC ≈ 2.4× 10−26 kg, mO ≈ 3.2× 10−26 kg, k ∼ 200 J/m2, and the values of fundamental
constants, numerically evaluate the frequency of radiation Ω3 with which CO2 strongly interacts
with.

B4. The typical frequency emitted by an object at temperature T is ωT = kBT/~. Using T ∼ 300 K
for the surface of the Earth, evaluate ωT for the Earth’s thermal radiation. Compare to Ω3.

C:10 Now, let us repeat this calculation for the N2 molecule. Letting x± denote the displacements of the
two nitrogen atoms, we find

x± = X1 ±X2 (10)

and Ω1 = 0, while Ω2 6= 0.

C1. In one or two sentences, argue that if you try to generalize (7) to N2, you expect that p = αX1

for some constant α.

C2. Deduce that N2 does not interact effectively with electromagnetic radiation.

These simple considerations allow us to see that CO2 is a greenhouse gas, while N2 (or O2 etc.) are not.
In fact, somewhat unfortunately, only diatomic A2 molecules will, in general, not interact with radiation
within the dipole approximation. Since our order of magnitude estimates for CO2 also hold for more
general molecules, this simple physical argument suggests that most molecules in the atmosphere can
play a role in the greenhouse effect, contributing to climate change.

Problem 4 (Qubit decoherence):20 Consider a qubit encoded in quantum states |0〉 and |1〉: as one example,
these may correspond to two particular energy levels in an atom. This atom (or any other qubit platform)
will inevitably have more states in Hilbert space, which are unwanted and which we can decay in to. In
this problem, let us consider just adding one more state |b〉 to the Hilbert space. Suppose that the encoded
qubit is subject to Hamiltonian

H0 = ε0|0〉〈0|+ ε1|1〉〈1|, (11)

i.e. H0|b〉 = 0|b〉.
Now, let us consider the effect of environmental noise, which couples the logical qubit states to the

bad state |b〉. We will model this noise with a time-dependent perturbation: H = H0 + V (t) where

V (t) = δ (|0〉〈b|+ |1〉〈b|+ |b〉〈0|+ |b〉〈1|) ξ(t). (12)

Here ε is real, and ξ(t) is noise: a random function obeying

E[ξ(t)] = 0, (13a)

E [ξ(t)ξ(s)] = f(t− s). (13b)

E[· · · ] denotes averaging over classical noise, and f(t) is a function determined to the precise environ-
mental dynamics giving rise to the noise.

1. Suppose that the qubit starts in state |i〉 (i = 0, 1). Write a formal expression for the probability
Pi→b(t) of transitioning to |b〉 at time t, within first-order time-dependent perturbation theory.

2. Average over the random noise, assuming that

f(t) = e−|t|/τ . (14)

You may assume that t� τ if it helps you to simplify your expression for Pi→b(t).

3. Estimate the lifetime T of the qubit: i.e. the time scale T over which |〈b|ψ(T )〉| � 1.
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