PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 11

Due: April 27 at 11:59 PM. Submit on Canvas.

30 Problem 1: Consider the harmonic oscillator

2
1
H= g—m + §mw2x2. (1)

In this problem, it may help to work in units where h=m =w = 1.

1. Sketch the curve of constant H = E in the classical phase space. What does it look like?

2. Use Bohr-Sommerfeld quantization to approximately quantize H. Compare to the exact answer.

Problem 2: Consider a particle of mass m in a deep potential well in one dimension:

oo <0
Viz)y=¢ 0 0<z<L . (2)
Vo x>1L

20 A: Let us use the Bohr-Sommerfeld approximation to estimate the energy levels.

Al. What are the energy levels E, that you predict? Assume for the moment that n is relatively
small.

A2. Compare your answer to the infinite square well (what should happen if Vj — oo0) and comment
on the result.

10 B: What happens if n > 17 Argue that there are a finite number of bound states, with higher energy
eigenstates being unbound. Estimate the number of bound states of the potential V'(z).

Problem 3 (o decay): In this problem we will study a simple model for the decay of a heavy nucleus
by emitting an o particle, also known as a “He nucleus. For convenience, let us simplify our model of a
nucleus to consist of a particle in the following one-dimensional potential for x > 0:

0 0<zr<a
V=9 228 (3)
dmegx -

Here a is the size of the nucleus, while Z is the number of protons in the nucleus (after the o decay). Let
FE be the kinetic energy of the particle trapped in the nucleus.

30 A: Let us consider a semiclassical model for the lifetime of this metastable state, following Lecture 36.

Al. Explain why the o particle “trapped inside” 0 < z < @ is in a metastable state.
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A2. Estimate the probability of the particle tunneling through the potential barrier during each “col-
lision” with the wall at » = a. You may want to use Mathematica to evaluate an integral.

A3. Deduce your estimate for the lifetime of the metastable state, approximating that £ < Ze? /4mega
to simplify your answer to:

/ ['m mZe2a
~ - 4
T=a oXp th 2E (4)
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B: The typical size of a nucleus is about a ~ 1071 Z1/3 m, while the mass of an « particle is about 1
kg. Suppose that the energy it is ejected with is E ~ 1.5 x 107147 J.

B1l. Estimate the lifetime of a uranium atom with Z ~ 92.

B2. Argue that, within our very simple model, there is a maximal value of Z at which a nucleus might
be stable. Compare to Z ~ 120, which is the largest nucleus created to date. (Note that all such
nuclei are extremely unstable.)

Problem 4 (Disorder): In this problem, we will study the eigenstates of a Hamiltonian describing a
one-dimensional particle moving through a weak random potential:
P2
H=—+V(z), )
L+ v) (5)

where V(x) is random (in a manner we will specify later), but has small amplitude.
We look for an eigenfunction of H with energy E: call it ¢)(x). Defining

vVomE

k=
ne (©
we make a WKB-like ansatz for the wave function:
Y(x) = R(x)sinf(x), (7a)
d
‘é(x) = kR(z) cos 0(x). (7b)
x

If V(z) =0, a solution to these equations is §(z) = kz and R(x) =

1. Show that the consistency of our definitions for R and #, together with the time-independent Schrodinger
equation, require:

1dR mV

E@ = ﬁ 8111(29)7 (8&)
de mV
i =k— e (1 —cos(20)) . (8b)

2. Argue that at first order in the small number V', we can write

O(x) =kx— [ dy
0

mV (y)
kh2

(1 —cos(2ky)) . 9)



3. If V is random, and equally likely to be positive or negative, then such a first order correction in V is
not very interesting, and might be negligible. However, if we find terms proportional to V2, such terms
could be important, because this is always positive. Along these lines, plug in (9) into your equation
for R, and argue that at second order in V:

T Yy

log R(z) ~ _Eifﬂ /dyV(y) cos(2ky) /sz(z) (1 — cos(2kz)) . (10)
0 0
4. Let E[- - -] denote averages over the random disorder potential V'(x). If the disorder has very short-range
correlations, we can argue that
E[V(2)V(y)] = Dd(z —y), (11)

where D is a constant related to the “strength” of the disorder (weak disorder means D is “small”).
Conclude that upon averaging over disorder, you expect that a typical wave function will have an
exponentially changing amplitude

R(z) ~ e%/¢ (12)
at large, positive, z. Find an expression for the localization length &.

Notice that this wave function a priori is very badly normalized: R — oo as x — oo. The physical
resolution to this problem is that our calculation is effectively probing the left tail of a wave function
localized around some point xg far to the right, and if we found the true solution to the Schrédinger
equation, we would see: R(z) ~ e~1#=%0l/€ The location of zy would depend on precise details of V()
and is beyond the simple approximations made above.

The physical conclusion is as follows: even a tiny amount of disorder will have drastic consequences
on the behavior of the eigenfunctions of H, which go from being delocalized plane waves at D = 0, to
exponentially localized for any D > 0. This phenomenon is called Anderson localization, after its
discoverer.



