Homework 11

Due: April 27 at 11:59 PM. Submit on Canvas.

Problem 1: Consider the harmonic oscillator

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} . \tag{1}
\end{equation*}
$$

In this problem, it may help to work in units where $\hbar=m=\omega=1$.

1. Sketch the curve of constant $H=E$ in the classical phase space. What does it look like?
2. Use Bohr-Sommerfeld quantization to approximately quantize H. Compare to the exact answer.

Problem 2: Consider a particle of mass m in a deep potential well in one dimension:

$$
V(x)= \begin{cases}\infty & x<0 \tag{2}\\ 0 & 0 \leq x \leq L \\ V_{0} & x>L\end{cases}
$$

A: Let us use the Bohr-Sommerfeld approximation to estimate the energy levels.
A1. What are the energy levels E_{n} that you predict? Assume for the moment that n is relatively small.
A2. Compare your answer to the infinite square well (what should happen if $V_{0} \rightarrow \infty$) and comment on the result.

B: What happens if $n \gg 1$? Argue that there are a finite number of bound states, with higher energy eigenstates being unbound. Estimate the number of bound states of the potential $V(x)$.

Problem 3 (α decay): In this problem we will study a simple model for the decay of a heavy nucleus by emitting an α particle, also known as a ${ }^{4} \mathrm{He}$ nucleus. For convenience, let us simplify our model of a nucleus to consist of a particle in the following one-dimensional potential for $x \geq 0$:

$$
V(x)=\left\{\begin{array}{ll}
0 & 0 \leq x<a \tag{3}\\
\frac{2 Z e^{2}}{4 \pi \epsilon_{0} x} & x \geq a
\end{array} .\right.
$$

Here a is the size of the nucleus, while Z is the number of protons in the nucleus (after the α decay). Let E be the kinetic energy of the particle trapped in the nucleus.

A: Let us consider a semiclassical model for the lifetime of this metastable state, following Lecture 36 .
A1. Explain why the α particle "trapped inside" $0 \leq x \leq a$ is in a metastable state.

A2. Estimate the probability of the particle tunneling through the potential barrier during each "collision" with the wall at $r=a$. You may want to use Mathematica to evaluate an integral.
A3. Deduce your estimate for the lifetime of the metastable state, approximating that $E \ll Z e^{2} / 4 \pi \epsilon_{0} a$ to simplify your answer to:

$$
\begin{equation*}
\tau \approx a \sqrt{\frac{2 m}{E}} \exp \left[\frac{Z e^{2}}{\epsilon_{0} \hbar} \sqrt{\frac{m}{2 E}}-\frac{2}{\hbar} \sqrt{\frac{m Z e^{2} a}{\pi \epsilon_{0}}}\right] . \tag{4}
\end{equation*}
$$

B: The typical size of a nucleus is about $a \sim 10^{-15} Z^{1 / 3} \mathrm{~m}$, while the mass of an α particle is about 10^{-26} kg . Suppose that the energy it is ejected with is $E \sim 1.5 \times 10^{-14} Z \mathrm{~J}$.

B1. Estimate the lifetime of a uranium atom with $Z \sim 92$.
B2. Argue that, within our very simple model, there is a maximal value of Z at which a nucleus might be stable. Compare to $Z \sim 120$, which is the largest nucleus created to date. (Note that all such nuclei are extremely unstable.)

20 Problem 4 (Disorder): In this problem, we will study the eigenstates of a Hamiltonian describing a one-dimensional particle moving through a weak random potential:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V(x) \tag{5}
\end{equation*}
$$

where $V(x)$ is random (in a manner we will specify later), but has small amplitude.
We look for an eigenfunction of H with energy E : call it $\psi(x)$. Defining

$$
\begin{equation*}
k=\frac{\sqrt{2 m E}}{\hbar} \tag{6}
\end{equation*}
$$

we make a WKB-like ansatz for the wave function:

$$
\begin{align*}
\psi(x) & =R(x) \sin \theta(x) \tag{7a}\\
\frac{\mathrm{d} \psi(x)}{\mathrm{d} x} & =k R(x) \cos \theta(x) \tag{7b}
\end{align*}
$$

If $V(x)=0$, a solution to these equations is $\theta(x)=k x$ and $R(x)=1$.

1. Show that the consistency of our definitions for R and θ, together with the time-independent Schrödinger equation, require:

$$
\begin{align*}
\frac{1}{R} \frac{\mathrm{~d} R}{\mathrm{~d} x} & =\frac{m V}{k \hbar^{2}} \sin (2 \theta), \tag{8a}\\
\frac{\mathrm{d} \theta}{\mathrm{~d} x} & =k-\frac{m V}{k \hbar^{2}}(1-\cos (2 \theta)) . \tag{8b}
\end{align*}
$$

2. Argue that at first order in the small number V, we can write

$$
\begin{equation*}
\theta(x)=k x-\int_{0}^{x} \mathrm{~d} y \frac{m V(y)}{k \hbar^{2}}(1-\cos (2 k y)) . \tag{9}
\end{equation*}
$$

3. If V is random, and equally likely to be positive or negative, then such a first order correction in V is not very interesting, and might be negligible. However, if we find terms proportional to V^{2}, such terms could be important, because this is always positive. Along these lines, plug in (9) into your equation for R, and argue that at second order in V :

$$
\begin{equation*}
\log R(x) \approx-\frac{m}{E \hbar^{2}} \int_{0}^{x} \mathrm{~d} y V(y) \cos (2 k y) \int_{0}^{y} \mathrm{~d} z V(z)(1-\cos (2 k z)) . \tag{10}
\end{equation*}
$$

4. Let $\mathbb{E}[\cdots]$ denote averages over the random disorder potential $V(x)$. If the disorder has very short-range correlations, we can argue that

$$
\begin{equation*}
\mathbb{E}[V(x) V(y)] \approx D \delta(x-y), \tag{11}
\end{equation*}
$$

where D is a constant related to the "strength" of the disorder (weak disorder means D is "small"). Conclude that upon averaging over disorder, you expect that a typical wave function will have an exponentially changing amplitude

$$
\begin{equation*}
R(x) \sim \mathrm{e}^{x / \xi} \tag{12}
\end{equation*}
$$

at large, positive, x. Find an expression for the localization length ξ.
Notice that this wave function a priori is very badly normalized: $R \rightarrow \infty$ as $x \rightarrow \infty$. The physical resolution to this problem is that our calculation is effectively probing the left tail of a wave function localized around some point x_{0} far to the right, and if we found the true solution to the Schrödinger equation, we would see: $R(x) \sim \mathrm{e}^{-\left|x-x_{0}\right| / \xi}$. The location of x_{0} would depend on precise details of $V(x)$ and is beyond the simple approximations made above.

The physical conclusion is as follows: even a tiny amount of disorder will have drastic consequences on the behavior of the eigenfunctions of H, which go from being delocalized plane waves at $D=0$, to exponentially localized for any $D>0$. This phenomenon is called Anderson localization, after its discoverer.

