
PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 2

Due: February 2 at 11:59 PM. Submit on Canvas.

Problem 1: Let k ≥ 0 be an integer. Consider a quantum harmonic oscillator, with angular frequency ω,
in the state

|ψ(0)〉 =
1√
2

[|2k〉+ |2k + 1〉] . (1)

A:10 What is |ψ(t)〉? Is this state stationary?

B:15 Evaluate the expectation value of the momentum: 〈ψ(t)|p|ψ(t)〉.

C:10 Suppose that we measure the energy H at time t = π/ω.

C1. What are the possible outcomes we can get? What is the probability of each?

C2. For t > π/ω, what can you say about 〈ψ(t)|p|ψ(t)〉?

Problem 2 (Quantum optics): The electric field of a monochromatic plane wave can be written as

E(x, t) = E−(x, t) + E+(x, t), (2a)

E−(x, t) = Ceik·x−iωta, (2b)

E+(x, t) = Ce−ik·x+iωta†, (2c)

with ω = c|k|. The constant spatial vector C will not be important to us in this problem. The a and
a† in these formulas represent raising and lowering operators of a quantum harmonic oscillator, obeying
[a, a†] = 1. The intensity operator is given by

I = E+ ·E−. (3)

A:10 Suppose we look at the relative strength of fluctuations in the instantaneous intensity,

g =
〈ψ|I2|ψ〉
〈ψ|I|ψ〉2

=

〈
ψ
∣∣∣(a†a)2∣∣∣ψ〉
〈ψ|a†a|ψ〉2

. (4)

Explain why g ≥ 1, in quantum mechanics.

B:10 In quantum optics, your photodetector will not measure g. Instead, you measure

g′ =

〈
ψ
∣∣∣(a†)2 a2∣∣∣ψ〉
〈ψ|a†a|ψ〉2

. (5)

In classical physics, a and a†, which are related to the amplitudes of the electric field E±, commute,
so g = g′. Show however that in quantum mechanics, g 6= g′, by finding a state |ψ〉 in which g′ < 1,
while g ≥ 1. The experimental observation g′ < 1 confirmed the quantum nature of light in the 1960s.
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Problem 3 (Atom in a harmonic trap): In this problem we will describe atoms in a harmonic trap. This
qualitative type of experiment is routinely done locally here at JILA, and relies on the angular momentum
of the atom to couple to a magnetic field (as we will detail a little more later in the class). For now, you
can think that the Hamiltonian of the atom is

H =
p2x + p2y + p2z

2m
+ αB (6)

where m ≈ 10−26 kg is the atomic mass (here we assume that the atom is Li), and α ≈ 10−23J/T is a
constant. B represents the modulus of the local magnetic field. An atom trap can be made by combining
a large, uniform, rotating magnetic field

Brot = B1 (cos(ωt)x̂ + sin(ωt)ŷ) (7)

with a “quadrupole” magnetic field

Bquad =
B2

L
(xx̂ + yŷ − 2zẑ) . (8)

You can check that both fields obey ∇ ·B = 0, so are physical.

A:10 Let us begin by showing that H is approximately a three-dimensional harmonic oscillator.

A1. Evaluate B = |Brot + Bquad| by taking the length of the combined vector.

A2. Assume that B1 is very large, so that you can do a Taylor expansion in B2. Show that

B ≈ B1 +
B2

L
(x cos(ωt) + y sin(ωt)) +

B2
2

2L2B1

(
x2 + y2 + 4z2 − (x cos(ωt) + y sin(ωt))2

)
. (9)

A3. An effective time-independent H can be found by averaging over the t variable. By evaluating
the integrals over sin(ωt), cos(ωt) and their appropriate powers, show that this time-independent
H is given by

H ≈ αB1 +
p2x + p2y + p2z

2m
+

αB2
2

4L2B1

(
x2 + y2 + 8z2

)
. (10)

The first term in H adds an overall constant to your later answers - feel free to ignore it.

A4. In a real experiment, one might take B1 = 15 mT, B2 = 5 T, L = 0.5 m. Based on these numbers,
and the harmonic approximation to H given in (10), estimate the size R of the wave function in
its ground state (you can take, e.g. the width of the Gaussian wave function to be R). Confirm
that B1 � B2R/L, and therefore that our approximation from A2 is appropriate.

B:20 Now we turn to the quantum problem.

B1. For the Hamiltonian in (10), find the four lowest eigenvalues of H, and all corresponding eigenvec-
tors (you can keep them in bra-ket notation, without finding the position-space answer, as long
as you explain conceptually what’s going on). As part of your answer describe the degeneracy of
these energy levels.

B2. What is the frequency scale of oscillations of the atom in this harmonic ptotential?
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Problem 4:15 Numerically solve the differential equation

d2ψ

dx2
+
(
2E − x2

)
ψ = 0, (11)

fixing initial conditions ψ(0) = 1 and dψ
dx (0) = 0.1 This is the harmonic oscillator’s Schrödinger equation

in units where ~ = m = ω = 1. Describe what you find for the numerical solutions for E in the domain
0 < E < 3, and explain what is going on.

Problem 5 (Carbon dioxide): The CO2 molecule is a linear molecule with a central carbon atom sur-
rounded by two oxygen atoms. Assuming for simplicity that the molecule moves in one spatial dimension,
approximating that the only degrees of freedom are the atomic positions, and approximating each covalent
bond with a harmonic oscillator, the Hamiltonian describing this molecule’s dynamics is

H =
p21

2mO
+

p22
2mC

+
p23

2mO
+
k

2
(x1 − x2)2 +

k

2
(x2 − x3)2 . (12)

A:10 There is a general strategy (that you may have learned in classical mechanics) for solving coupled
harmonic oscillators. Let us denote pi = (p1, p2, p3) as the three momenta, and xi = (x1, x2, x3) as
the three coordinates. We look for an invertible matrix Sij such that we can define coordinates

Pi =
3∑
j=1

Sijpj , (13a)

Xi =
3∑
j=1

S−1ji xj , (13b)

and that in these coordinates,

H =
3∑
j=1

1

2

[
P 2
j + ω2

jX
2
j

]
. (14)

A1. To show why this is a good idea, begin by evaluating the commutators [Xi, Pj ].

A2. Explain how to find the eigenvalues and eigenfunctions of H, as given in (14). You do not need
to, as of yet, actually find ωj for CO2 – we’ll do that next.

B:10 Now we turn to the CO2 molecule. We’ll need the matrix Sij . To do this, we look for a matrix

S = R · S̃ (a product of two matrices). Define P̃i and X̃i as in (13), but using S̃.

B1. Find a simple (diagonal) matrix S̃ such that

H =

3∑
j=1

P̃ 2
j

2
+

3∑
i,j=1

1

2
X̃iK̃ijX̃j . (15)

The matrix K̃ does not need to be diagonal, but it should be symmetric.

B2. Describe qualitatively how to find ω2
j in (14), given the matrix K̃.

B3. Find the matrix R, and/or deduce expressions for Xi in terms of the original xj coordinates. The
Xi are called normal mode (coordinates): describe the physical motion of the CO2 molecule in
each of your three normal modes.

B4. What are the eigenvalues of H for the CO2 molecule? Qualitatively describe the eigenfunctions.

1Hint: I suggest using NDSolve in Mathematica. You should be able to modify the example given in the documentation
to solve this problem using about one line of code (for each E).
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