
PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 3

Due: February 9 at 11:59 PM. Submit on Canvas.

Problem 1: Suppose I have two spin-12 particles, with Hamiltonian

H = A1Sz,1 +A2Sz,2. (1)

Here Sz,1/2 denotes the 2× 2 matrix acting on a spin-12 degree of freedom.

A:15 Let us begin by describing the Hilbert space of this quantum system.

A1. Write down the 4 possible states that the quantum system can be in (neglect particle indistin-
guishability until part C).

A2. Write down 4× 4 matrices representing Sz,1 and Sz,2.

A3. Write down Sz,1 and Sz,2 as the tensor product of two appropriate 2× 2 matrices, and explain in
one sentence what the tensor product accomplishes for us here.

B:10 Define the particle exchange operator P as we did in Lecture 7. Show that PHP = H, or [P,H] = 0,
only if A1 = A2.

C:10 From now on, assume A1 = A2, so that the particles are indistinguishable. Recall that since the
particles are spin-12 , they must be fermions.

C1. If |ψ〉 is a fermionic quantum state describing these two particles’ (spins), what is P |ψ〉?
C2. How many fermionic states can you find?

C3. What is the energy of each of these states?

Problem 2: Consider 3 spin-020 indistinguishable and non-interacting particles, capable of occupying the
four quantum states |1〉, |2〉, |3〉, |4〉.

1. Are these particles bosons or fermions? Why?

2. Write down a wave function where 2 particles are in |3〉, and one particle is in |1〉. Is your answer
unique?

3. How many (bosonic) states are there in the Hilbert space? (You don’t have to write them all explicitly.)

Problem 3: Consider the HamiltonianH and eigenstates |n〉 (or ψn(x) if you prefer) of the one-dimensional
infinite square well, discussed in McIntyre Section 5.3 (and from the first semester). Define the operator
Q, which acts on wave functions as

Qϕ(x) = ϕ(L− x). (2)

A:5 Show explicitly that Q2 = 1.1

1Hint: It might be easiest to do this by acting with each side of the operator equality on a general wave function ϕ(x).
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B:10 Show explicitly that QHQ = H, or [Q,H] = 0.

C:10 Classify the eigenstates ψn into either the even or odd representation of the Z2 symmetry.

Problem 4 (Pigments): A typical pigment molecule has the structure sketched in Figure 1, and consists
of a long chain of covalently bonded atoms which can be approximated as a one dimensional infinite
square well. Suppose there are N + 1 atoms in the long chain of carbon atoms: approximate that each of
the N bonds contributes one “free” spin-1/2 electron, of mass m, which may move up and down the chain
of bonds freely. If each bond has length a, when N is large, we may thus approximate these electrons as
moving in an infinite square well of width L = Na.

A: Using10 the Pauli exclusion principle and the
energy levels for the particle in a box (i.e.
infinite square well), describe which energy
levels in the box are filled and which are
empty in the ground state. Ignore electron-
electron interactions.

Figure 1: The β-carotene molecule is responsible for the or-
ange color of carrots.

B: Now,10 suppose we send a photon of wavelength λ at the pigment molecule.

B1. What is the largest value of λ such that the photon can be absorbed by an electron in the pigment
molecule? Assume N > 1. When the photon is absorbed, the electron must be able to jump to
an unoccupied state in the box. You should find that when N � 1,

λ ≈ 4cma2

π~
N. (3)

B2. We might estimate that N = 18 for β-carotene, as depicted in Figure 1. Evaluate λ, given that
m ≈ 9× 10−31 kg and a ≈ 10−10 m, and compare to the wavelength of orange light: 600 nm.

Problem 5 (Cavity quantum electrodynamics): In atomic physics,15 the interactions of an electron in an
atom with photons in a cavity can be modeled as follows. We consider a single harmonic oscillator, where
states |n〉 correspond to the quantum state with n photons excited, coupled to a single spin-12 degree of
freedom (modeling two different quantum states of the atom) |s〉, where s =↑, ↓. So the total Hilbert
space consists of states of the form |n〉⊗|s〉. Letting a|n〉 =

√
n|n〉 denote the standard lowering operator,

we consider the Hamiltonian
H = ω0a

†a+Aσz +B
(
aσ+ + a†σ−

)
, (4)

where σ+ = | ↑〉〈↓ |, σ− = | ↓〉〈↑ |, σz = | ↑〉〈↑ | − | ↓〉〈↓ |, and ω0, A,B are constants. Note that here a†a
is shorthand for a†a ⊗ 1 and σz is shorthand for 1 ⊗ σz: from the context it is clear what operators act
on the oscillator vs. the spin.

1. Let N = a†a+ 1
2σz. Show that [H,N ] = 0.

2. Use this fact to find exact formulas for all eigenvalues of H.
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