Homework 3

Due: February 9 at 11:59 PM. Submit on Canvas.
Problem 1: Suppose I have two spin- $\frac{1}{2}$ particles, with Hamiltonian

$$
\begin{equation*}
H=A_{1} S_{z, 1}+A_{2} S_{z, 2} \tag{1}
\end{equation*}
$$

Here $S_{z, 1 / 2}$ denotes the 2×2 matrix acting on a spin- $\frac{1}{2}$ degree of freedom.
A: Let us begin by describing the Hilbert space of this quantum system.
A1. Write down the 4 possible states that the quantum system can be in (neglect particle indistinguishability until part C).
A2. Write down 4×4 matrices representing $S_{z, 1}$ and $S_{z, 2}$.
A3. Write down $S_{z, 1}$ and $S_{z, 2}$ as the tensor product of two appropriate 2×2 matrices, and explain in one sentence what the tensor product accomplishes for us here.

10 B: Define the particle exchange operator P as we did in Lecture 7. Show that $P H P=H$, or $[P, H]=0$, only if $A_{1}=A_{2}$.

C: From now on, assume $A_{1}=A_{2}$, so that the particles are indistinguishable. Recall that since the particles are spin- $\frac{1}{2}$, they must be fermions.

C1. If $|\psi\rangle$ is a fermionic quantum state describing these two particles' (spins), what is $P|\psi\rangle$?
C2. How many fermionic states can you find?
C3. What is the energy of each of these states?
20 Problem 2: Consider 3 spin-0 indistinguishable and non-interacting particles, capable of occupying the four quantum states $|1\rangle,|2\rangle,|3\rangle,|4\rangle$.

1. Are these particles bosons or fermions? Why?
2. Write down a wave function where 2 particles are in $|3\rangle$, and one particle is in $|1\rangle$. Is your answer unique?
3. How many (bosonic) states are there in the Hilbert space? (You don't have to write them all explicitly.)

Problem 3: Consider the Hamiltonian H and eigenstates $|n\rangle$ (or $\psi_{n}(x)$ if you prefer) of the one-dimensional infinite square well, discussed in McIntyre Section 5.3 (and from the first semester). Define the operator Q, which acts on wave functions as

$$
\begin{equation*}
Q \varphi(x)=\varphi(L-x) \tag{2}
\end{equation*}
$$

5 A: Show explicitly that $Q^{2}=1 .{ }^{1}$

[^0]B: Show explicitly that $Q H Q=H$, or $[Q, H]=0$.
C: Classify the eigenstates ψ_{n} into either the even or odd representation of the \mathbb{Z}_{2} symmetry.
Problem 4 (Pigments): A typical pigment molecule has the structure sketched in Figure 1, and consists of a long chain of covalently bonded atoms which can be approximated as a one dimensional infinite square well. Suppose there are $N+1$ atoms in the long chain of carbon atoms: approximate that each of the N bonds contributes one "free" spin- $1 / 2$ electron, of mass m, which may move up and down the chain of bonds freely. If each bond has length a, when N is large, we may thus approximate these electrons as moving in an infinite square well of width $L=N a$.

A: Using the Pauli exclusion principle and the energy levels for the particle in a box (i.e. infinite square well), describe which energy levels in the box are filled and which are empty in the ground state. Ignore electronelectron interactions.

Figure 1: The β-carotene molecule is responsible for the orange color of carrots.

B: Now, suppose we send a photon of wavelength λ at the pigment molecule.
B1. What is the largest value of λ such that the photon can be absorbed by an electron in the pigment molecule? Assume $N>1$. When the photon is absorbed, the electron must be able to jump to an unoccupied state in the box. You should find that when $N \gg 1$,

$$
\begin{equation*}
\lambda \approx \frac{4 c m a^{2}}{\pi \hbar} N . \tag{3}
\end{equation*}
$$

B2. We might estimate that $N=18$ for β-carotene, as depicted in Figure 1. Evaluate λ, given that $m \approx 9 \times 10^{-31} \mathrm{~kg}$ and $a \approx 10^{-10} \mathrm{~m}$, and compare to the wavelength of orange light: 600 nm .

15 Problem 5 (Cavity quantum electrodynamics): In atomic physics, the interactions of an electron in an atom with photons in a cavity can be modeled as follows. We consider a single harmonic oscillator, where states $|n\rangle$ correspond to the quantum state with n photons excited, coupled to a single spin- $\frac{1}{2}$ degree of freedom (modeling two different quantum states of the atom) $|s\rangle$, where $s=\uparrow, \downarrow$. So the total Hilbert space consists of states of the form $|n\rangle \otimes|s\rangle$. Letting $a|n\rangle=\sqrt{n}|n\rangle$ denote the standard lowering operator, we consider the Hamiltonian

$$
\begin{equation*}
H=\omega_{0} a^{\dagger} a+A \sigma_{z}+B\left(a \sigma_{+}+a^{\dagger} \sigma_{-}\right) \tag{4}
\end{equation*}
$$

where $\sigma_{+}=|\uparrow\rangle\langle\downarrow|, \sigma_{-}=|\downarrow\rangle\langle\uparrow|, \sigma_{z}=|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|$, and ω_{0}, A, B are constants. Note that here $a^{\dagger} a$ is shorthand for $a^{\dagger} a \otimes 1$ and σ_{z} is shorthand for $1 \otimes \sigma_{z}$: from the context it is clear what operators act on the oscillator vs. the spin.

1. Let $N=a^{\dagger} a+\frac{1}{2} \sigma_{z}$. Show that $[H, N]=0$.
2. Use this fact to find exact formulas for all eigenvalues of H.

[^0]: ${ }^{1}$ Hint: It might be easiest to do this by acting with each side of the operator equality on a general wave function $\varphi(x)$.

