Homework 4

Due: February 23 at 11:59 PM. Submit on Canvas.

Problem 1 (Benzene): The benzene molecule, shown in Figure 1, consists of 6 carbon atoms arranged in a ring. Each carbon atom contributes one mobile electron which will be delocalized around the entire molecule. A toy model describing a single such electron is as follows: let $|n\rangle$ denote the state where the electron is localized around carbon atom $n=1, \ldots, 6$. There are 6 mobile electrons, assumed to be non-interacting, each of which is described by the Hamiltonian

$$
\begin{equation*}
H=-\alpha \sum_{n=1}^{6}(|n+1\rangle\langle n|+|n\rangle\langle n+1|) . \tag{1}
\end{equation*}
$$

where we interpret $|6+1\rangle=|1\rangle$: namely the chain closes on itself!

A: This problem has a \mathbb{Z}_{6} symmetry which we can use to exactly solve it.

A1. Define the operator

$$
\begin{equation*}
R=\sum_{n=1}^{6}|n+1\rangle\langle n| . \tag{2}
\end{equation*}
$$

Show that $R^{6}=1$.
A2. Show that $[H, R]=0$.
A3. Find the eigenvectors/values of H.

Figure 1: The molecule benzene, with carbon atoms in black and hydrogen atoms in white (from Wikipedia). This problem is about the electronic states on the central carbon ring.

B: Now return to the 6 electron problem. While you do not need to write the wave function explicitly, qualitatively describe the configuration of the electrons in the ground state of benzene.

Problem 2: Consider a Hamiltonian H describing a particle hopping in a one-dimensional lattice:

$$
\begin{equation*}
H=\sum_{n=-\infty}^{\infty}[4 a(|n+1\rangle\langle n|+|n\rangle\langle n+1|)-a(|n+2\rangle\langle n|+|n\rangle\langle n+2|)] . \tag{3}
\end{equation*}
$$

1. Write out $H|n\rangle$ (as in Lectures 10 and 11).
2. Show that $[H, R]=0$. Here R is defined as in Lecture 11 .
3. Find the eigenvalues of H, and describe the resulting dispersion relation $E(k)$.
4. Are the low energy states well approximated by a particle of some effective mass? Why or why not?

20
Problem 3 (White dwarf): A white dwarf is a star in which the quantum mechanical "degeneracy pressure" arising from a Fermi gas of mobile electrons prevents gravitational collapse. In this problem, we consider a white dwarf to be a star of radius r, containing a density n of nucleons of mass $m_{\text {nuc }}$. Assume that every nucleon contributes one mobile electron of mass m to a Fermi gas. The gravitational potential energy of a white dwarf of N total nucleons can be approximated as

$$
\begin{equation*}
V_{\text {grav }}=-\frac{3 G M^{2} N^{2}}{5 r} \tag{4}
\end{equation*}
$$

1. What is the number density of mobile electrons, and the corresponding energy density of the Fermi gas? ${ }^{1}$ Conclude that the total energy of the white dwarf is given by

$$
\begin{equation*}
E_{\mathrm{tot}}=-\frac{3 G M^{2} N^{2}}{5 r}+\left(\frac{3}{2 \pi}\right)^{7 / 3} \frac{\pi^{3} \hbar^{2} N^{5 / 3}}{5 m r^{2}} \tag{5}
\end{equation*}
$$

2. Find the radius R of the white dwarf by minimizing $E_{\text {tot }}$:

$$
\begin{equation*}
r=\left(\frac{9 \pi}{4}\right)^{2 / 3} \frac{\hbar^{2}}{G m M^{2} N^{1 / 3}} \tag{6}
\end{equation*}
$$

3. Numerically determine the radius of a white dwarf with a total mass comparable to our sun, $10^{30} \mathrm{~kg}$. Estimate that the nucleon mass $M \approx 10^{-27} \mathrm{~kg}$ and the electron mass $m \approx 10^{-30} \mathrm{~kg}$ in your calculation.

Problem 4: Consider the following model of a single electron moving in a one-dimensional solid:

$$
\begin{equation*}
H=-\sum_{n=-\infty}^{\infty}\left(\beta+(-1)^{n} \gamma\right)(|n\rangle\langle n+1|+|n+1\rangle\langle n|) \tag{7}
\end{equation*}
$$

This Hamiltonian is similar to, but distinct from, the one studied in Lecture 12.

A: Show explicitly that if $\gamma \neq 0,[H, R] \neq 0$ (where R was defined in Lecture 11); however, $\left[H, R^{2}\right]=0$ does hold.

B: Show that the eigenvalues of H are

$$
\begin{equation*}
E(k)= \pm 2 \sqrt{\beta^{2} \cos ^{2} k+\gamma^{2} \sin ^{2} k} \tag{8}
\end{equation*}
$$

where k is the dimensionless wave number discussed in Lectures 11 and 12. Explain in this formula (or the one you find) the range of k that correspond to distinct quantum states, and why.

C: Suppose that in a chain of length $L \gg 1$, a fraction $\nu L(0 \leq \nu \leq 1$ of the atoms in the chain contribute a mobile electron that can move throughout the metal. For what values of ν do we find a metal, and for what ν an insulator? Explain your answer.

[^0]Problem 5 (Space group): The symmetry group of a crystal lattice, called the space group, generally combines both a discrete rotational group (called a point group - as it leaves one point fixed!) and a spatial translation. In this problem we will think about the simplest such "interesting" space group, which describes the Hamiltonian model from Lectures 10 and 11:

$$
\begin{equation*}
H=-\beta \sum_{n \in \mathbb{Z}}[|n+1\rangle\langle n|+|n\rangle\langle n+1] . \tag{9}
\end{equation*}
$$

5 A: Let us define the parity transformation

$$
\begin{equation*}
P|n\rangle=|-n\rangle . \tag{10}
\end{equation*}
$$

Note that this leaves the origin $|0\rangle$ fixed. Show that $[H, P]=0$ and that $P^{2}=1$; hence H has a parity symmetry.

B: Let R be the discrete translation defined in Lectures 10 and 11. Show that H has a symmetry group consisting of $\left\{R^{n}, R^{n} P\right\}$ for any $n \in \mathbb{Z}$. You should justify both of the emphasized words.

5 C: Why does H have a degenerate spectrum?

[^0]: ${ }^{1}$ Hint: The answer is given in Lecture $9-$ scan through the recorded lecture if you need to!

