
PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 5

Due: March 2 at 11:59 PM. Submit on Canvas.

Problem 1:25 Consider the spin states of a spin-32 particle.

1. In the basis where angular momentum Jz is diagonal, write down the matrices for Jx, Jy and Jz.

2. Calculate explicitly the eigenvalues for Jx.1 Looking at the answer, explain why you could have
predicted what you find without doing the explicit calculation.

Problem 2 (Flux quantization):25 Consider a particle of charge q = −2e and mass M , trapped to move
along a conducting ring of radius R, which is placed in a magnetic field of uniform strength B. The
Hamiltonian describing the single particle motion is
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Here φ denotes the angular coordinate of the particle on the ring – we neglect its motion in the radial (or
vertical) direction for convenience.

1. Show that [H,Lz] = 0.

2. Deduce the eigenfunctions of H.

3. Since φ is an angular coordinate, we must identify the points φ and φ + 2π. In particular, all wave
functions ψ(φ) = ψ(φ + 2π). If you did not yet account for this fact, do so, and find the (discrete)
energy spectrum of H.

4. If the ring is made out of superconducting material, it turns out that current will begin to flow in such
a way that the effective magnetic field through the center of the ring, B, is chosen in a way that H
has a zero energy ground state. Show that this requires (here h = 2π~)

ΦB = B × πR2 = n
h

q
. (2)

We find that the magnetic flux ΦB must be quantized in terms of fundamental constants!

5. In a condensed matter laboratory, it is not too challenging to prepare a magnetic field of 1 T in
strength. In zinc, the effective mass is very close to the bare electron mass M ≈ 10−30 kg. If we have
a zinc ring of radius R = 10−6 m, will we be able to see a finite magnetic flux penetrating the ring in
our experiment (assuming we can make it cold enough to make zinc into a superconductor)?

1You can use e.g. Mathematica to carry out the actual computation, so long as you can explain in words how you would
set it up to do by hand as well.
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Problem 3 (Covalent bond): Consider the hydrogen molecule ion: H+
2 . We place the two protons of

charge +e at the locations (x, y, z) = (0, 0,±a). The Hamiltonian describing the motion of a single
electron shared between them is

H = − ~2

2m
∇2 − e2

4πε0

[
1√

s2 + (z − a)2
+

1√
s2 + (z + a)2

]
(3)

where s2 = x2 + y2 is the “radial” coordinate in cylindrical coordinates.

A:5 Give an intuitive argument (no math needed) that [H,Lz] = 0, but [H,Lx] = [H,Ly] 6= 0.

B:5 One can show as a consequence that the eigenfunctions of H take the form of

ψαm(s, φ, z) = ψαm(s, z)eimφ, (4)

for integer m ∈ Z. This state is an eigenfunction of Lz, with eigenvalue Lz = m~. The label “α”
denotes any additional information associated with the state, and will include its energy level.

Does the symmetry group generated by Lz imply any degeneracy in the spectrum of H? Why or why
not?

C:10 The full symmetry group of H can be shown to include elements of the form eiαLz/~ for any angle α,
and the three spatial parity symmetries Px,y,z, which are defined (in rectangular coordinates) as, e.g.,

Pxψ(x, y, z) = ψ(−x, y, z). (5)

Multiplication of any such group elements are also allowed.

C1. Explain why [H,Px] = [H,Py] = [H,Pz] = 0.

C2. Using that Lz = xpy − ypx, show that

LzPy = −PyLz. (6)

Conclude that the symmetry group of H is non-Abelian.

D:10 In this example, we can try to explicitly see how the higher dimensional irreducible representations of
the symmetry group arise (and in turn, understand the symmetry-enforced degeneracy of H).

D1. Explain why (a picture is fine, if you don’t want to explicitly calculate!)

Pyψm(s, z)eimφ = ψm(s, z)e−imφ. (7)

D2. Conclude that ψm(s, z)[α cos(mφ) + β sin(mφ)] is an eigenfunction of H for any α, β. Conclude
that H must have (at least) two-dimensional irreducible representations.

In quantum chemistry, the |m| = 0, 1, . . . irreps are labeled with σ, π, . . .. When one talks about σ-bonds
and π-bonds in organic molecules, e.g., they are referring to the molecular orbitals above, which are
(approximately) classified by the symmetry group we have found in this problem.2

2In a complicated molecule, the local environment has even less symmetry, but one still often approximately thinks of the
wave functions forming each covalent bond as classified by an approximate rotational symmetry around the axis of the bond.

2



Problem 4 (Geometry of rotations): In this problem, we will explore the “global” properties of rotations
in quantum mechanics (as opposed to the “local” commutators betweeen Jx,y,z).

A:10 Let us begin by thinking about what angle we need to rotate by, to return to the identity. Namely,

for what angle α is eiαJz/~ = 1? Let’s consider a spin-12 particle, where we have seen that

Jz =
~
2

(
1 0
0 −1

)
=

~
2
σz. (8)

A1. Show that3

eiαJz/~ = 1 · cos
α

2
+ σz · i sin

α

2
(9)

A2. One rather surprising answer is that only when α = 4π, do we find eiαJz/~ = 1! Argue, however,
that there is no quantum experiment that can be done that distinguishes the state |ψ〉 from the
state e2πiJz/~|ψ〉 (rotation by 2π). In this sense, rotation by 2π indeed gives us the “same physics”.

B:10 The rotation group generated by Jx, Jy and Jz (for spin-12) is called SU(2). It turns out (you don’t
need to show this) that the most general possible rotation is of the form

U =

(
a0 + ia3 ia1 − a2
ia1 + a2 a0 − ia3

)
, (10)

subject to the constraint det(U) = 1. Note that (9) corresponds to a particular choice of this U where
only a0, a3 6= 0.

B1. Evaluate the constraint det(U) = 1 to find a constraint on the a0,1,2,3 coefficients. Conclude that
the space of possible rotations, SU(2), is identical to the surface of a ball in 4-dimensional space.
(This is called the 3-dimensional sphere S3, since locally on the sphere, you can move in 3 different
directions.)

B2. As in A2, we might consider that not all rotations correspond to distinct quantum states, so long
as there is no physical way to tell the states apart. Argue that we can instead think of the set of
physically distinct rotations as the set of all lines in four-dimensional space passing through the
origin. This space is called RP3, and the group of rotations subject to these constraints is SO(3).

SO(3) and SU(2) turn out to be two continuous (Lie) groups generated by the angular momentum
algebra, but with a distinct global structure. When quantum mechanics was first created, it realized
a very concrete application of the (previously) esoteric mathematics of continuous groups.

Problem 5 (Molecular spectroscopy): A simple molecule such as ammonia (NH3) has rotational dynamics
described by the Hamiltonian

H =
L2
x + L2

y

2I0
+
L2
z

2Iz
. (11)

where L denotes the orbital angular momentum.

A: Show10 that the energy levels of the Hamiltonian are given by

Elm =
~2

2I0
l(l + 1) +

[
~2

2Iz
− ~2

2I0

]
m2, (l = 0, 1, 2, . . . , m = 0,±1, . . . ,±l). (12)

3Hint: Use the Taylor series for exponentiation, sines and cosines, and identities from Lecture 13.
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B: For15 reasons we will derive later in this course, when a photon is absorbed or emitted by this molecule,
the value of l and m can only change by 0 or ±1 in the most prominent transitions.4 A physical
chemist finds that the lowest frequencies of light which are absorbed or emitted by a molecule whose
rotational degrees of freedom are described by (11) are:

ν ≈ 22.4, 57.0, 67.3, 79.4, 91.5, 112, 126, 136, 159 GHz. (13)

Using only this data, along with the values of fundamental constants, estimate I0 and Iz.

4Actually, the so-called “selection rules” are even more complicated for these molecules, however we will pretend they are
simple for convenience. Note that the “experimental data” presented here is also fake, because we are oversimplifying the
allowed transitions. Still, this problem should give you the spirit for how a physical chemist would interpret their data.
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