
PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 7

Due: March 16 at 11:59 PM. Submit on Canvas.

Problem 1: Consider the following Hamiltonian, which describes a particle attracted to the origin by a
force of constant strength F :

H =
p2

2m
+ F |x|, (1)

A:10 Consider the trial wave function

ψtrial(x) = A×
{
`− |x| |x| ≤ `
0 otherwise

. (2)

By requiring that the wave function is normalized, show that

A =

√
3

2`3
. (3)

B:20 Using the variational principle, conclude that the ground state energy of this Hamiltonian obeys

E0 ≤
(

81~2F 2

128m

)1/3

. (4)

Problem 2 (Yukawa potential): The binding of two nucleons (with reduced mass m) is reasonably de-
scribed by the following Hamiltonian for an effective single particle problem:

H =
p2

2m
−Aξ e−|r|/ξ

|r|
. (5)

The last term, which is similar to the Coulomb potential, but with an exponential decay, is the Yukawa
potential. This binding is mediated by the nuclear strong forces and is responsible for the existence of
more complicated atoms (and ultimately, us!).1

A: Consider the following20 variational ansatz, already normalized for you:

ψtrial(r;α) =

√
α3

π
e−αr. (6)

A1. Show that for this problem, with a spherically symmetric trial wave function,

Etrial(α) = 〈ψtrial(α)|H|ψtrial(α)〉 =

∫
dr 4πr2

(
~2

2m

∣∣∣∣∂ψtrial

∂r

∣∣∣∣2 −Aξ e−|r|/ξ

|r|
|ψtrial(α)|2

)
. (7)

1Hint: This problem is discussed in Tong’s notes, if you want a few intermediate results! (But you’ll need to show more
steps of the calculation than he does.) Also I have switched up notation a bit, so make sure to be careful when comparing
your answer to Tong.
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A2. Evaluate this integral (feel free to use Mathematica) and show that

Etrial(α) =
~2α2

2m
− 4Aξ3α3

(1 + 2αξ)2
. (8)

B:15 Now let us analyze (8).

B1. Argue that there is a finite length ξc for which if ξ > ξc, a bound state must exist (i.e. the ground
state energy E0 < 0).2

B2. For realistic nucleons, m ≈ 8 × 10−28 kg, and ξ ≈ 2 × 10−15 m. Using the fact that non-trivial
atoms (nuclear bound states) exist, estimate a lower bound (numerical value, with units) on A.

Problem 3 (Ferromagnetism): As a toy model for how electrons in a metal interact, consider a one-
dimensional infinite square well of side length L in each direction. Inside of this well, we consider two
spin-12 electrons of charge −e and mass m.

A: As in Lecture 8,15 consider the problem of two non-interacting electrons in the box; namely, begin with
the Hamiltonian

H0 =
p21
2m

+
p22
2m

+ Vwell(x1) + Vwell(x2), (9)

where Vwell is the infinite square well potential.

A1. What is the ground state wave function? Why is it unique? Call it |0〉.
A2. Show that H0 has four degenerate first-excited states: what are they?

A3. Show that these degenerate excited states are naturally organized into a spin triplet and spin
singlet state. Call a representative of the triplet (e.g. the Jz = ~ state) |t〉, and call a representative
of the singlet state |s〉.

B:20 Now, let us consider the electrostatic interactions of the two electrons. If this metal were truly one-
dimensional, the electrostatic potential energy between them would be3

Vint = − e2

4πε
|x1 − x2|. (10)

In what follows, consider the true Hamiltonian to be H = H0 + Vint.

B1. Using the variational principle, and following Lecture 21, calculate the energies

E0 = 〈0|H|0〉, (11a)

Es = 〈s|H|s〉, (11b)

Et = 〈t|H|t〉. (11c)

You are encouraged to use Mathematica to do symbolic integration, rather than evaluate two-
dimensional integrals that arise by hand. Argue that E0 < Es always, whereas Et can either be
larger or smaller than E0, depending on the strength of interactions.

B2. Take m ∼ 10−30 kg, L ∼ 4 × 10−10 m, and e2/4πε ∼ 2 × 10−8 J/m. For these numbers, deduce
that the triplet state is the lowest energy state.

2Hint: Begin by looking for values of α where Etrial(α) = 0. Can you then argue that if there two of these points, then
Etrial(α) has to be negative somewhere?

3Here, ε would have different SI units than in our three-dimensional world!
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When the triplet state is the lowest energy state, there is an effective interaction that prioritizes nearby
electronic spins in the metal to align. If this happens between many electron spins, then there is a
macroscopic magnetization, since each electron spin has a small magnetic moment. This leads to a
ferromagnet: a phase of matter where magnetization will spontaneously arise.

While this is of course a toy model, the physical conclusion you should reach is actually quite reason-
able. In ordinary metals such as iron, the origin of ferromagnetism (spontaneous magnetization) arises
from these “exchange interactions”, and not from the dipole-dipole interactions between the electron spins
themselves.

Problem 4 (Spectral methods): Consider an infinite square well (particle constrained to the domain
0 ≤ x ≤ L). Inside of this well, the Hamiltonian is

H = − ~2

2m

d2

dx2
+ u sin

πx

L
, (12)

where u > 0 is some positive constant. In this problem, let ψn(x) denote the normalized eigenstates of
this Hamiltonian with u = 0:

ψn(x) =

√
2

L
sin

nπx

L
, (13)

with energy levels

En = n2ε, where ε =
~2π2

2mL2
. (14)

A:10 We will attempt to find the ground state of H numerically, using a variational calculation with trial
wave function

ψtrial(x) =
2N−1∑

n=1,3,5,...

cnψn(x) (15)

for some integer N ≥ 1. This wave function should be normalized.

A1. Find the matrix M such that

〈ψtrial|H|ψtrial〉 =
(
c1 · · · c2N−1

)
M

 c1
...

c2N−1

 . (16)

You may take as given the following integral:

L∫
0

dx ψn(x)ψm(x) sin
πx

L
= − 4mn(1 + (−1)m+n)

π((m+ n)2 − 1)((m− n)2 − 1)
. (17)

A2. If you were to apply the variational principle to upper bound the ground state energy of H, what
would you need to calculate about the matrix M?

A3. Explain why your estimate of the ground state energy E0 can only improve as N increases.

A4. Explain why your estimate of E0 converges to the correct answer as N →∞.

B:10 Now, implement this algorithm numerically.

B1. Pick a fixed value of u 6= 0. Estimate how quickly your estimate of E0 is converging as N gets
sufficiently large.4

4For u/ε ∼ 1, you should be able to deduce the answer without going beyond N = 100.
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B2. Using a sufficiently large value of N , make a numerical plot of the ground state energy as a
function of u for, e.g., |u|/ε . 10.

What you have just implemented is a kind of spectral method for numerically finding eigenvalues of
the differential operator H. Namely, rather than approximating derivatives a la

dψ(xj)

dx
≈ ψ(xj)− ψ(xj−1)

xj − xj−1
, (18)

and numerically implementing H in this fashion, we are instead “discretizing” the function ψ(x) by
expanding it into a convenient basis of functions! While these spectral methods can be harder to scale to
ultra-large scale computations, for most other problems, (pseudo)spectral methods are the gold standard
for numerical solutions of differential equations.
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