
PHYS 4410: Quantum Mechanics 2 Spring 2023

Homework 8

Due: April 6 at 11:59 PM. Submit on Canvas.

Problem 1 (Clock transitions): Identifying good “qubits” in atomic or solid-state platforms is a problem
of current research interest. A toy model for how we can try to find such a good qubit is as follows.
Consider a single nuclear spin I, interacting with a single electron spin S, through the hyperfine interaction.
(These spins could either be in an isolated atom, or in a defect atom in a solid.) The total nuclear spin
and total electron spin are both 1

2 . In the presence of a background magnetic field of strength B, pointing
in the z-direction, we model the Hamiltonian for the two spins as

H = H0 + V, H0 = AS · I +Bg0(Sz + Iz), V = BδSz. (1)

Here, for convenience, set δ � g0 to be a small perturbation, with A,B, g0 > 0 all constants.

A:10 Show that the eigenstates of H0 are the coupled basis states (Lecture 17), while the eigenvalues are

E(0) = −3

4
A~2,

1

4
A~2 −Bg0~,

1

4
A~2,

1

4
A~2 +Bg0~. (2)

B:20 Assume that H0 is non-degenerate (which is true for generic magnetic field strengths B). Now consider
δ 6= 0, and for V to be a small perturbation.

B1. Write down the matrix elements of V in the coupled basis.

B2. Calculate the eigenvalues of H, En, up to second order in δ:

E ≈ −3

4
A~2 − B2δ2

4A
,
1

4
A~2 −Bg0~−

Bδ~
2
,
1

4
A~2 +

B2δ2

4A
,
1

4
A~2 +Bg0~ +
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2
. (3)

C:5 If there is magnetic field noise in nature (so B fluctuations), we would like to be able to accurately
address our qubit, meaning that we should store the qubit in two energy levels a and b such that
∆E = Ea − Eb is approximately independent of B. Find ω0 (and the states a and b) such that for
small b, ∆E depends on B as weakly as possible (when B is small). Such a transition is called a clock
transition, since its frequency is more stable than the other possible transitions.

Problem 2 (Fine structure of hydrogen): Small relativistic corrections to the hydrogen atom’s spectrum
are called fine structure. Ignoring spin, the relativistic Hamiltonian for the hydrogen atom is given by

H =
√
m2c4 + p2c2 −mc2 − e2

4πε0r
. (4)

The speed of light c is very large, and so we can think of 1/c as a small parameter.

A:5 Perform a Taylor series in 1/c, and show that

H ≈ p2

2m
− e2

4πε0r
−
(
p2
)2

8m2c2
+ · · · . (5)
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B:20 The 1/c2 term in (5) can be treated as a small perturbation. Although the hydrogen atom spectrum
is degenerate in general, if all we care about is the correction to the ground state energy, since the
ground state is non-degenerate we can go ahead and use non-degenerate perturbation theory. Let H0

denote the non-relativistic hydrogen atom Hamiltonian, namely (5) with c =∞.

B1. Write p2 in terms of H0 and 1/r, together with any constants of nature (m, c, ε0, e).

B2. Let E
(0)
0 denote the ground state energy of hydrogen. Show that at first order in perturbation

theory,

E
(1)
0 = − 1

2mc2

((
E

(0)
0

)2
+

e2

2πε0
E

(0)
0

〈
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r

〉
+

e4

(4πε0)2

〈
1

r2

〉)
, (6)

where 〈· · · 〉 are expectation values in the unperturbed ground state of the hydrogen atom.

B3. Show how to evaluate out these integrals, using the ground state wave function in spherical
coordinates,

ψ0(r) =
e−r/a√
πa3

, a =
4πε0~2

me2
. (7)

B4. Defining the fine structure constant

α =
e2

4πε0~c
≈ 1

137
, (8)

conclude that

E
(0)
0 + E

(1)
0 ≈ −1

2
mc2α2 − 5

8
mc2α4 + · · · . (9)

(9) tells us that the ground state energy of hydrogen is smaller than its rest mass by a factor of α2. The
same factor describes the strength of relativistic corrections to the hydrogen atom spectrum, which are
evidently rather small (but detectable in experiment nonetheless!).

Problem 3 (Dissociation of the hydrogen molecule): We saw on Homework 1 that the harmonic oscillator
could be a good approximation for a chemical bond in a diatomic molecule, such as H2. Consider the
following oscillator model for such a bond:

H =
p2

2m
+

1

2
mω2x2 − γx3 + · · · (10)

We solved this problem exactly when γ = 0. Now, let us solve this problem with perturbation theory
when γ is “small”.

A:10 Let us begin with dimensional analysis.

A1. What are the SI units of the parameter γ?

A2. Build a quantity with the same units as γ out of m, ~ and ω: i.e. ma~bωc (what are a, b, c?).

A3. Explain why γ must be small relative to this quantity you have built for perturbation theory to
be a sensible approximation method.

B:20 Go up to second order in perturbation theory in the “small parameter” γ.

B1. Show that the nth energy level of H is approximately1

En ≈ ~ω
(
n+

1

2

)
− ~2γ2

8m3ω4

(
11 + 30n+ 30n2

)
+ · · · (11)

1Hint: First express x in terms of raising and lowering operators.
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B2. Is your argument from part A3 reasonable?

C:10 The result of part B suggests that for large enough n, the values En start to decrease! At this point,
we should expect the covalent bond will break, since this downturn is signaling that the particle is
beginning to escape to x = +∞ (where the potential energy is arbitrarily negative). We can estimate
the energy scale at which H2 would break apart (the dissociation energy) by fitting the discrete
energy levels En measured in the actual H2 molecular bond to a quadratic function of the parameter
n (treat it as continuous for this part), and looking for the maximum value of this fitting function.
The energy levels of the H2 bond are

∆E = 0.52, 1.00, 1.46, 1.89, 2.29, 2.67, 3.01, 3.33, 3.61, 3.86, 4.08, 4.25, 4.38, 4.46 eV. (12)

(The first entry in this list is E1 − E0, the second is E2 − E0, and so on.) Estimate the dissociation
energy of this bond, and compare to the experimental value of 4.52 eV.

Problem 4 (Perturbation theory from block matrix inversion):20 Consider a non-degenerate Hamiltonian

H0 on a finite dimensional Hilbert space. Assume H0 has eigenvectors |n(0)〉 with eigenvalues E
(0)
n . Let

λ be perturbatively small, and consider the new Hamiltonian H = H0 + λV .
In this problem, we will think about the perturbation theory for the eigenvalues of H by using the

following block matrix inversion formula: let A be an m ×m matrix, B be an m × n matrix, C be an
n×m matrix and D be an n× n matrix. Then(

A B
C D

)−1
=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +DC−1(A−BD−1C)−1BD−1

)
. (13)

You may also find the following formula useful: for “small” matrix N compared to invertible matrix M :

(M −N)−1 = M−1
∞∑
k=0

(
NM−1

)k
. (14)

1. Define the resolvent operator R(z) = (z −H)−1. Argue that if we are perturbatively calculatingEn,

we are looking for the value of z (close to E
(0)
n ) at which 〈n(0)|R(z)|n(0)〉 =∞.

2. Show that this condition is satisfied when

z = E(0)
n +λ〈n(0)|V |n(0)〉+λ2

∑
m,k 6=n

〈n(0)|V |m(0)〉
〈
m(0)

∣∣∣∣(z −H⊥0 − λV ⊥)−1∣∣∣∣ k(0)〉 〈k(0)|V |n(0)〉. (15)

where H⊥0 and V ⊥ are the matrices H0 and V with the |n(0)〉 row/column deleted.

3. Describe qualitatively how to solve this equation to find the expression for the perturbed En to any
order in λ. Concretely show how the method works by giving the analytical expressions for the
perturbed En up to fourth order in λ. As a partial answer:

E(3)
n =

∑
m,k 6=n

〈n(0)|V |m(0)〉〈m(0)|V |k(0)〉〈k(0)|V |n(0)〉
(E

(0)
m − E(0)

n )(E
(0)
k − E

(0)
n )

− 〈n(0)|V |n(0)〉
∑
m 6=n

|〈m(0)|V |n(0)〉|2

(E
(0)
m − E(0)

n )2
. (16)

This “strange” method for evaluating higher order corrections to En(λ) should, at a minimum, help
explain why the higher order corrections in perturbation theory involve the peculiar sums over m 6= n.
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