Homework 8

Due: April 6 at 11:59 PM. Submit on Canvas.

Problem 1 (Clock transitions): Identifying good "qubits" in atomic or solid-state platforms is a problem of current research interest. A toy model for how we can try to find such a good qubit is as follows. Consider a single nuclear spin \mathbf{I}, interacting with a single electron spin \mathbf{S}, through the hyperfine interaction. (These spins could either be in an isolated atom, or in a defect atom in a solid.) The total nuclear spin and total electron spin are both $\frac{1}{2}$. In the presence of a background magnetic field of strength B, pointing in the z-direction, we model the Hamiltonian for the two spins as

$$
\begin{equation*}
H=H_{0}+V, \quad H_{0}=A \mathbf{S} \cdot \mathbf{I}+B g_{0}\left(S_{z}+I_{z}\right), \quad V=B \delta S_{z} . \tag{1}
\end{equation*}
$$

Here, for convenience, set $\delta \ll g_{0}$ to be a small perturbation, with $A, B, g_{0}>0$ all constants.

B: Assume that H_{0} is non-degenerate (which is true for generic magnetic field strengths B). Now consider $\delta \neq 0$, and for V to be a small perturbation.

B1. Write down the matrix elements of V in the coupled basis.
B2. Calculate the eigenvalues of H, E_{n}, up to second order in δ :

$$
\begin{equation*}
E \approx-\frac{3}{4} A \hbar^{2}-\frac{B^{2} \delta^{2}}{4 A}, \frac{1}{4} A \hbar^{2}-B g_{0} \hbar-\frac{B \delta \hbar}{2}, \frac{1}{4} A \hbar^{2}+\frac{B^{2} \delta^{2}}{4 A}, \frac{1}{4} A \hbar^{2}+B g_{0} \hbar+\frac{B \delta \hbar}{2} . \tag{3}
\end{equation*}
$$

5 C: If there is magnetic field noise in nature (so B fluctuations), we would like to be able to accurately address our qubit, meaning that we should store the qubit in two energy levels a and b such that $\Delta E=E_{a}-E_{b}$ is approximately independent of B. Find ω_{0} (and the states a and b) such that for small $b, \Delta E$ depends on B as weakly as possible (when B is small). Such a transition is called a clock transition, since its frequency is more stable than the other possible transitions.

Problem 2 (Fine structure of hydrogen): Small relativistic corrections to the hydrogen atom's spectrum are called fine structure. Ignoring spin, the relativistic Hamiltonian for the hydrogen atom is given by

$$
\begin{equation*}
H=\sqrt{m^{2} c^{4}+\mathbf{p}^{2} c^{2}}-m c^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r} . \tag{4}
\end{equation*}
$$

The speed of light c is very large, and so we can think of $1 / c$ as a small parameter.
A: Perform a Taylor series in $1 / c$, and show that

$$
\begin{equation*}
H \approx \frac{\mathbf{p}^{2}}{2 m}-\frac{e^{2}}{4 \pi \epsilon_{0} r}-\frac{\left(\mathbf{p}^{2}\right)^{2}}{8 m^{2} c^{2}}+\cdots \tag{5}
\end{equation*}
$$

B: The $1 / c^{2}$ term in (5) can be treated as a small perturbation. Although the hydrogen atom spectrum is degenerate in general, if all we care about is the correction to the ground state energy, since the ground state is non-degenerate we can go ahead and use non-degenerate perturbation theory. Let H_{0} denote the non-relativistic hydrogen atom Hamiltonian, namely (5) with $c=\infty$.

B1. Write \mathbf{p}^{2} in terms of H_{0} and $1 / r$, together with any constants of nature $\left(m, c, \epsilon_{0}, e\right)$.
B2. Let $E_{0}^{(0)}$ denote the ground state energy of hydrogen. Show that at first order in perturbation theory,

$$
\begin{equation*}
E_{0}^{(1)}=-\frac{1}{2 m c^{2}}\left(\left(E_{0}^{(0)}\right)^{2}+\frac{e^{2}}{2 \pi \epsilon_{0}} E_{0}^{(0)}\left\langle\frac{1}{r}\right\rangle+\frac{e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2}}\left\langle\frac{1}{r^{2}}\right\rangle\right) \tag{6}
\end{equation*}
$$

where $\langle\cdots\rangle$ are expectation values in the unperturbed ground state of the hydrogen atom.
B3. Show how to evaluate out these integrals, using the ground state wave function in spherical coordinates,

$$
\begin{equation*}
\psi_{0}(r)=\frac{\mathrm{e}^{-r / a}}{\sqrt{\pi a^{3}}}, \quad a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}} \tag{7}
\end{equation*}
$$

B4. Defining the fine structure constant

$$
\begin{equation*}
\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c} \approx \frac{1}{137} \tag{8}
\end{equation*}
$$

conclude that

$$
\begin{equation*}
E_{0}^{(0)}+E_{0}^{(1)} \approx-\frac{1}{2} m c^{2} \alpha^{2}-\frac{5}{8} m c^{2} \alpha^{4}+\cdots \tag{9}
\end{equation*}
$$

(9) tells us that the ground state energy of hydrogen is smaller than its rest mass by a factor of α^{2}. The same factor describes the strength of relativistic corrections to the hydrogen atom spectrum, which are evidently rather small (but detectable in experiment nonetheless!).

Problem 3 (Dissociation of the hydrogen molecule): We saw on Homework 1 that the harmonic oscillator could be a good approximation for a chemical bond in a diatomic molecule, such as H_{2}. Consider the following oscillator model for such a bond:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}-\gamma x^{3}+\cdots \tag{10}
\end{equation*}
$$

We solved this problem exactly when $\gamma=0$. Now, let us solve this problem with perturbation theory when γ is "small".

A: Let us begin with dimensional analysis.
A1. What are the SI units of the parameter γ ?
A2. Build a quantity with the same units as γ out of m, \hbar and ω : i.e. $m^{a} \hbar^{b} \omega^{c}$ (what are a, b, c ?).
A3. Explain why γ must be small relative to this quantity you have built for perturbation theory to be a sensible approximation method.

B: Go up to second order in perturbation theory in the "small parameter" γ.
B1. Show that the $n^{\text {th }}$ energy level of H is approximately ${ }^{1}$

$$
\begin{equation*}
E_{n} \approx \hbar \omega\left(n+\frac{1}{2}\right)-\frac{\hbar^{2} \gamma^{2}}{8 m^{3} \omega^{4}}\left(11+30 n+30 n^{2}\right)+\cdots \tag{11}
\end{equation*}
$$

[^0]B2. Is your argument from part A3 reasonable?
C: The result of part B suggests that for large enough n, the values E_{n} start to decrease! At this point, we should expect the covalent bond will break, since this downturn is signaling that the particle is beginning to escape to $x=+\infty$ (where the potential energy is arbitrarily negative). We can estimate the energy scale at which H_{2} would break apart (the dissociation energy) by fitting the discrete energy levels E_{n} measured in the actual H_{2} molecular bond to a quadratic function of the parameter n (treat it as continuous for this part), and looking for the maximum value of this fitting function. The energy levels of the H_{2} bond are

$$
\begin{equation*}
\Delta E=0.52,1.00,1.46,1.89,2.29,2.67,3.01,3.33,3.61,3.86,4.08,4.25,4.38,4.46 \mathrm{eV} \tag{12}
\end{equation*}
$$

(The first entry in this list is $E_{1}-E_{0}$, the second is $E_{2}-E_{0}$, and so on.) Estimate the dissociation energy of this bond, and compare to the experimental value of 4.52 eV .

Problem 4 (Perturbation theory from block matrix inversion): Consider a non-degenerate Hamiltonian H_{0} on a finite dimensional Hilbert space. Assume H_{0} has eigenvectors $\left|n^{(0)}\right\rangle$ with eigenvalues $E_{n}^{(0)}$. Let λ be perturbatively small, and consider the new Hamiltonian $H=H_{0}+\lambda V$.

In this problem, we will think about the perturbation theory for the eigenvalues of H by using the following block matrix inversion formula: let A be an $m \times m$ matrix, B be an $m \times n$ matrix, C be an $n \times m$ matrix and D be an $n \times n$ matrix. Then

$$
\left(\begin{array}{ll}
A & B \tag{13}\\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D C^{-1}\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right) .
$$

You may also find the following formula useful: for "small" matrix N compared to invertible matrix M :

$$
\begin{equation*}
(M-N)^{-1}=M^{-1} \sum_{k=0}^{\infty}\left(N M^{-1}\right)^{k} \tag{14}
\end{equation*}
$$

1. Define the resolvent operator $R(z)=(z-H)^{-1}$. Argue that if we are perturbatively calculating E_{n}, we are looking for the value of z (close to $E_{n}^{(0)}$) at which $\left\langle n^{(0)}\right| R(z)\left|n^{(0)}\right\rangle=\infty$.
2. Show that this condition is satisfied when

$$
\begin{equation*}
z=E_{n}^{(0)}+\lambda\left\langle n^{(0)}\right| V\left|n^{(0)}\right\rangle+\lambda^{2} \sum_{m, k \neq n}\left\langle n^{(0)}\right| V\left|m^{(0)}\right\rangle\left\langle m^{(0)}\right|\left(z-H_{0}^{\perp}-\lambda V^{\perp}\right)^{-1}\left|k^{(0)}\right\rangle\left\langle k^{(0)}\right| V\left|n^{(0)}\right\rangle . \tag{15}
\end{equation*}
$$

where H_{0}^{\perp} and V^{\perp} are the matrices H_{0} and V with the $\left|n^{(0)}\right\rangle$ row/column deleted.
3. Describe qualitatively how to solve this equation to find the expression for the perturbed E_{n} to any order in λ. Concretely show how the method works by giving the analytical expressions for the perturbed E_{n} up to fourth order in λ. As a partial answer:

$$
\begin{equation*}
E_{n}^{(3)}=\sum_{m, k \neq n} \frac{\left\langle n^{(0)}\right| V\left|m^{(0)}\right\rangle\left\langle m^{(0)}\right| V\left|k^{(0)}\right\rangle\left\langle k^{(0)}\right| V\left|n^{(0)}\right\rangle}{\left(E_{m}^{(0)}-E_{n}^{(0)}\right)\left(E_{k}^{(0)}-E_{n}^{(0)}\right)}-\left\langle n^{(0)}\right| V\left|n^{(0)}\right\rangle \sum_{m \neq n} \frac{\left.\left|\left\langle m^{(0)}\right| V\right| n^{(0)}\right\rangle\left.\right|^{2}}{\left(E_{m}^{(0)}-E_{n}^{(0)}\right)^{2}} . \tag{16}
\end{equation*}
$$

This "strange" method for evaluating higher order corrections to $E_{n}(\lambda)$ should, at a minimum, help explain why the higher order corrections in perturbation theory involve the peculiar sums over $m \neq n$.

[^0]: ${ }^{1}$ Hint: First express x in terms of raising and lowering operators.

