Practice Exam 2

Problem 1: Consider 2 spin-1 particles, with spin angular momenta $\mathbf{S}_{1,2}$.

A: Are these particles bosons or fermions?
B: Evaluate $1 \otimes 1$, and explain what this notation represents.
\mathbf{C} : Let $\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}$ denote the total spin. In terms of the uncoupled basis $\left|1 m_{1} 1 m_{2}\right\rangle$, write the coupled basis state $|s=1, m=1\rangle$.

D: Consider these two particles placed into a one-dimensional harmonic oscillator potential. You can set $\hbar=m=\omega=1$ if you like.

D1. What is the ground state energy, and what is the degeneracy of the state?
D2. What is the first excited state, and what is its degeneracy?
Problem 2: Consider two spin- $\frac{1}{2}$ fermions on a ring, with Hamiltonian

$$
H=-A \frac{\partial^{2}}{\partial \phi_{1}^{2}}-A \frac{\partial^{2}}{\partial \phi_{2}^{2}}+\left\{\begin{array}{ll}
B & \left|\phi_{1}-\phi_{2}\right| \leq \alpha \tag{1}\\
0 & \text { otherwise }
\end{array} .\right.
$$

Here $A, B>0$ are constants, and $\alpha \ll 1$ is a positive constant.
A: First consider the problem when $B=0$. Let $\left|n_{1} n_{2}\right\rangle$ denote the wave function $(2 \pi)^{-1} \mathrm{e}^{\mathrm{i}\left(n_{1} \phi_{1}+n_{2} \phi_{2}\right)}$.
A1. Explain why the unique ground state is

$$
\begin{equation*}
|\mathrm{g}\rangle=|00\rangle \otimes \frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}} . \tag{2}
\end{equation*}
$$

A2. Show that one of the first-excited states is the following state from the spin triplet:

$$
\begin{equation*}
|e\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}} \otimes|\uparrow \uparrow\rangle . \tag{3}
\end{equation*}
$$

B: Now, consider the theory with $B \neq 0$.
B1. Evaluate $\langle\mathrm{g}| H|\mathrm{~g}\rangle$ and $\langle\mathrm{e}| H|\mathrm{e}\rangle$.
B2. Describe the likely spin of the ground state of this model as a function of B.

15 Problem 3 (Landau levels): Consider an electron of mass m and charge $-e$, moving in a very thin layer of material, such that the motion of the electron can be approximated as two-dimensional. A magnetic field of strength B is applied perpendicular to the direction of motion. The Hamiltonian for an electron moving in this material can be chosen as

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+\frac{\left(p_{y}+e B x\right)^{2}}{2 m} . \tag{4}
\end{equation*}
$$

1. Show that $\left[H, p_{y}\right]=0$.
2. Show that the eigenvalues of H are ${ }^{1}$

$$
\begin{equation*}
E_{n}=\hbar \frac{e B}{m}\left(n+\frac{1}{2}\right), \quad(n=0,1,2, \ldots) . \tag{5}
\end{equation*}
$$

These wave functions are called Landau levels.
3. In condensed matter physics, it is very interesting to study electrons in the lowest Landau level. Using effective electron mass $m \approx 10^{-31} \mathrm{~kg}$, laboratory magnetic field strength $B \sim 1 \mathrm{~T}, e=1.6 \times 10^{-19}$ C and $\hbar \approx 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$, estimate the energy gap between the $n=0$ and $n=1$ states. Compare your answer to $10^{-23} \mathrm{~J}$, the energy scale associated to a temperature of 1 K (which is readily achievable in the lab).

Problem 4: Consider a three-level quantum system with Hamiltonian

$$
\begin{equation*}
H=-h \mathrm{e}^{\mathrm{i} \phi} R-h \mathrm{e}^{-\mathrm{i} \phi} R^{2}, \tag{6}
\end{equation*}
$$

where h and ϕ are real constants, while

$$
\begin{equation*}
R=|2\rangle\langle 1|+|3\rangle\langle 2|+|1\rangle\langle 3| . \tag{7}
\end{equation*}
$$

A: Let us begin by exactly finding the eigenvalues of H.
A1. Show that $R^{3}=1$.
A2. Show that $[H, R]=0$. Thus deduce H has a \mathbb{Z}_{3} symmetry generated by R.
A3. Use the \mathbb{Z}_{3} symmetry to find the eigenvalues and eigenvectors of H.
B: Notice that if $\phi=0, H$ becomes degenerate. This is not accidental.
B1. Show that when $\phi=0, H$ has a \mathbb{Z}_{2} symmetry generated by

$$
\begin{equation*}
S=|1\rangle\langle 1|+|2\rangle\langle 3|+|3\rangle\langle 2| . \tag{8}
\end{equation*}
$$

B2. What is the full symmetry group of H ?
B3. Explain why the Hilbert space consists of (the direct sum of) a one-dimensional and two-dimensional irreducible representation of the symmetry group.
B4. Deduce the origin of the degeneracy of H.
10 Problem 5: Let $A, B \neq 0$ be generic constants. Let $\mathbf{S}_{1,2,3,4}$ denote the spin matrices acting on four distinguishable particles, each of spin- $\frac{1}{2}$. Find the eigenvalues (and their degeneracies) of the Hamiltonian

$$
\begin{equation*}
H=A \mathbf{S}_{1} \cdot \mathbf{S}_{2}+A \mathbf{S}_{3} \cdot \mathbf{S}_{4}+B\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right) \cdot\left(\mathbf{S}_{3}+\mathbf{S}_{4}\right) \tag{9}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Hint: If you define $\tilde{x}=x+c$ for any constant c, then $\left[\tilde{x}, p_{x}\right]=\mathrm{i} \hbar$ continues to hold.

