Homework 1

- Due: 11:59 PM, January 25. Submit electronically on Canvas.
- Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why means a non-rigorous (but convincing) argument is acceptable.

15 Problem 1 (Concatenating strings): Consider the set consisting of the 26 Latin letters, together with the space character and the "empty character" $\emptyset: C=\{a, b, \ldots, z,[$ space,$~ \emptyset\}$. We can build words and sentences by concatenating these elements together: for example, $t \times h \times e=t h e$. Also note that for any string $X, X \times \emptyset=\emptyset \times X=X$.
i. Show that C, together with the concatenation operation, does not generate a group.
ii. Consider adding the [delete] element, which behaves as follows: for any $X, Y \in C$, [delete] $\times X \times Y=Y$. Does $C \cup\{[$ delete $]\}$, with the concatenation operations described above, generate a group? Assume [delete] $\times \emptyset=\emptyset$.

Problem 2: Consider the permutation group S_{n}.
i. Show that for any $i, j, k \in\{1, \ldots, n\}$,

$$
\begin{equation*}
(i j)(i k)(i j)=(j k) \tag{1}
\end{equation*}
$$

ii. Show that for any subset of $m+1$ numbers, denoted $i_{m},\left(i_{m} i_{m+1}\right)\left(i_{1} i_{2} \ldots i_{m}\right)=\left(i_{1} i_{2} \ldots i_{m-1} i_{m+1} i_{m}\right)$.
iii. Show that all permutations in S_{n} can be expressed as products of the permutations (12), \ldots, (1n).

15 Problem 3: Consider the groups \mathbb{R} and \mathbb{R} / \mathbb{Z} under addition, and the groups \mathbb{R}^{\times}and $\mathbb{R}_{+}^{\times}=\{x \in \mathbb{R}: x>0\}$ under multiplication. Show which of these groups (if any) are isomorphic to each other.

Problem 4 (Reference frames): In physics, we believe that fundamental equations of the universe are the same to all observers.

10 (a) Define the Galilean symmetry group G to contain the following transformations:

$$
\binom{x^{\prime}}{t^{\prime}}=\left(\begin{array}{ll}
1 & v \tag{2}\\
0 & 1
\end{array}\right)\binom{x}{t} .
$$

i. Show that the Galilean transformations (the matrices above) form a group.
ii. As we will see, it can be useful to write group elements of these continuous (Lie) groups as matrix exponentials. Show that

$$
\left(\begin{array}{ll}
1 & v \tag{3}\\
0 & 1
\end{array}\right)=\mathrm{e}^{v K}, \quad K=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

We say that K generates the group.
(b) Next, consider the Lorentz transformations. In units where $c=1$,

$$
\binom{x^{\prime}}{t^{\prime}}=\frac{1}{\sqrt{1-v^{2}}}\left(\begin{array}{ll}
1 & v \tag{4}\\
v & 1
\end{array}\right)\binom{x}{t} .
$$

To avoid relativistic velocity addition, let's reverse the logic from part (a).
i. Expand the Lorentz transformations to first order in small v to find the generator matrix K^{\prime}.
ii. Calculate $\mathrm{e}^{\theta K^{\prime}}$ to find the form of a general Lorentz transformation:

$$
\binom{x^{\prime}}{t^{\prime}}=\left(\begin{array}{cc}
\cosh \theta & \sinh \theta \tag{5}\\
\sinh \theta & \cosh \theta
\end{array}\right)\binom{x}{t} .
$$

iii. Conclude that the Lorentz transformations form a group L.
iv. Show that (4) and (5) are equivalent (i.e. relate θ and v).

5 (c) Explain why G and L are each isomorphic to \mathbb{R}.
Problem 5 (Quaternions): The quaternions are a generalization of complex numbers. Define

$$
\begin{equation*}
\mathbb{H}=\{a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k}: a, b, c, d \in \mathbb{R}\}, \tag{6}
\end{equation*}
$$

where the parameters $\mathrm{i}, \mathrm{j}, \mathrm{k}$ generalize the complex number i :

$$
\begin{equation*}
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ijk}=-1 \tag{7}
\end{equation*}
$$

Multiplication in \mathbb{H} obeys the associative $[(x y) z=x(y z)]$ and distributive $[(x+y) z=x z+y z]$ properties.
10 (a) One way to think of \mathbb{H} is a complex 2×2 matrix:

$$
a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k}=\left(\begin{array}{cc}
a+\mathrm{i} b & \mathrm{i} d+c \tag{8}\\
\mathrm{i} d-c & a-\mathrm{i} b
\end{array}\right)
$$

i. Show that (7) holds under the mapping (8). ${ }^{1}$
ii. Explain why quaternion multiplication can be replaced with the 2×2 matrix multiplication above. You do not (yet) need to be very rigorous.
(b) For $z \in \mathbb{H}$, define

$$
\begin{equation*}
N(z)=a^{2}+b^{2}+c^{2}+d^{2} \tag{9}
\end{equation*}
$$

i. Show that $N(z)$ is equivalent to the matrix determinant in the equivalence (8).
ii. Argue that if we remove the zero quaternion 0 , then $\mathbb{H}-\{0\}$ is a group under multiplication. Let's denote it \mathbb{H}^{\times}.
iii. Show that $N: \mathbb{H}^{\times} \rightarrow \mathbb{R}^{\times}$is a homomorphism.

10
(c) Consider the set $M=\{z \in \mathbb{H}: N(z)=1\}$.
i. Show that M is a group under quaternion multiplication.
ii. Show that M is isomorphic to $\operatorname{SU}(2)$. You may want to use (8).

[^0]10 (d) Unit quaternions are often used to implement rotations in computer graphics due to the improved stability of quaternion multiplication over matrix multiplication. Parameterize a unit quaternion by

$$
\begin{equation*}
z=\cos \frac{\alpha}{2}+\sin \frac{\alpha}{2}\left(u_{x} \mathrm{i}+u_{y} \mathrm{j}+u_{z} \mathrm{k}\right) . \tag{10}
\end{equation*}
$$

Parameterize a vector $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$ as a quaternion by

$$
\begin{equation*}
v=v_{x} \mathrm{i}+v_{y} \mathrm{j}+v_{z} \mathrm{k} . \tag{11}
\end{equation*}
$$

i. Show that $z v z^{-1}$ corresponds to rotation by angle α through an axis that is oriented in the direction of the unit vector $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$. For simplicity, take $\left(u_{x}, u_{y}, u_{z}\right)=(1,0,0)$.
ii. Argue that $\mathrm{SO}(3)=\mathrm{SU}(2) / \mathbb{Z}_{2}$: namely, one needs to rotate through angle 4π in $\mathrm{SU}(2)$ to return to the same state.

[^0]: ${ }^{1}$ You should quote without explicit derivation well known Pauli matrix multiplication rules. These in turn are probably worth memorizing!

