Homework 11

- Due: 11:59 PM, April 12. Submit electronically on Canvas.
- Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why means a non-rigorous (but convincing) argument is acceptable.

20
Problem 1 (Lens spaces): Consider a sphere $\mathrm{S}^{2 k-1}$, with $k \geq 1$ an integer. We can think of this sphere as a subspace of the complex plane \mathbb{C}^{k} :

$$
\begin{equation*}
\mathrm{S}^{2 k+1}=\left\{\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k}:\left|z_{1}\right|^{2}+\cdots+\left|z_{k}\right|^{2}=1\right\} . \tag{1}
\end{equation*}
$$

Let p be a positive integer. Consider the following equivalence relation on C^{k} :

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{k}\right) \sim\left(\mathrm{e}^{2 \pi \mathrm{i} / p} z_{1}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} / p} z_{k}\right) \tag{2}
\end{equation*}
$$

1.1. Show that this equivalence relation is well-defined on $\mathrm{S}^{2 k-1}$ as well.
1.2. Show that each point on $S^{2 k-1}$ is identified with $p-1$ other points by \sim.
1.3. Define $\mathrm{L}(2 k-1, p):=\mathrm{S}^{2 k-1} / \sim$. What is $\pi_{1}(\mathrm{~L}(2 k-1, p))$?
$\mathrm{L}(2 k-1, p)$ is called a lens space. These spaces played rather important roles in the history of topology, as it turns out one can find a variety of lens spaces which are not homeomorphic, but which have all of the same homotopy groups. Hence, the homotopy classification of topological spaces is incomplete!

Problem 2: Consider the map $\gamma: \mathrm{S}^{1} \rightarrow \mathrm{SO}(3)$ given by

$$
\gamma(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \tag{3}\\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Here $\theta \sim \theta+2 \pi$ corresponds to the angular coordinate on the circle S^{1}.
2.1. It turns out that $[\gamma]$ is the non-trivial element of $\pi_{1}(\mathrm{SO}(3))=\mathbb{Z}_{2}$. Based on this fact, use the relationship between $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$ to explain how to lift this into a non-closed path in $\mathrm{SU}(2)$.
2.2. If we traverse γ twice in $\mathrm{SO}(3)$, the resulting loop should lift to a loop in $\mathrm{SU}(2)$. For this lift into $\mathrm{SU}(2)$, construct an explicit homotopy:

$$
\begin{equation*}
\Gamma(\theta, t)=a(\theta, t) \cdot 1+b(\theta, t) \cdot \mathrm{i} \sigma^{x}+c(\theta, t) \cdot \mathrm{i} \sigma^{z} \tag{4}
\end{equation*}
$$

which goes from the "doubled γ " loop to a point in $\mathrm{SU}(2)$.
2.3. Now, convert this homotopy into a homotopy in $\mathrm{SO}(3) .{ }^{1}$

[^0]20 Problem 3: Consider the free group $G=\mathbb{Z} * \mathbb{Z}$, which is generated by two letters (e.g. a and b). Find a subgroup of G which is isomorphic to $\mathbb{Z} * \mathbb{Z} * \mathbb{Z}$ (namely, a free group on 3 generators). ${ }^{2}$

Problem 4: Consider a regular two-dimensional polygon with n sides. Let P_{n} be the set of all points which either lie inside, or on the boundary, of the polygon.

4.1. What is $\pi_{1}(X)$?

4.2. Show how to identify points in P_{n} with one another (via an equivalence relation \sim, which you should construct explicitly) to create a topological space $X=P_{n} / \sim$ with $\pi_{1}(X)=\mathbb{Z}_{n}$.

Problem 5 (Biaxial nematic liquid crystals): In this problem, we will study a more exotic (and less common) type of liquid crystal, whose order parameter space X can be thought of as the space of all orthogonal lines passing through the origin. Alternatively, we can think of X as classified by an (ordered) orthogonal triplet of unit vectors in \mathbb{R}^{3}, up to sign:

$$
\begin{equation*}
X=\left\{\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right): \mathbf{e}_{i} \cdot \mathbf{e}_{j}=\delta_{i j}\right\} /\left[\mathbf{e}_{i} \sim-\mathbf{e}_{i}, \text { for each } i \text { separately }\right] . \tag{5}
\end{equation*}
$$

The ordering of unit vectors is important, and cannot be swapped under the equivalence relation.

5A: Let's begin by calculating $\pi_{1}(X)$.
5A.1. Argue that you can think of $X=\mathrm{SO}(3) / \sim$, where (with a slight abuse of notation) \sim corresponds to the equivalence relation where exactly two of the three \mathbf{e}_{i} can be flipped.
5A.2. Using this result, explain why the universal covering space of X must be $\mathrm{SU}(2)$.
5A.3. Next, argue that the fundamental group $\pi_{1}(X)=Q$, where

$$
\begin{equation*}
Q=\left\{1,-1, \mathrm{i} \sigma^{x},-\mathrm{i} \sigma^{x}, \mathrm{i} \sigma^{y},-\mathrm{i} \sigma^{y}, \mathrm{i} \sigma^{z},-\mathrm{i} \sigma^{z}\right\} \tag{6}
\end{equation*}
$$

is an 8 element subgroup of $\operatorname{SU}(2)$, often called the discrete quaternion group. ${ }^{3}$
5B: Now, let's use homotopy theory to classify two dimensional topological defects in biaxial nematics, and understand how they interact with each other.

5B.1. Draw a "defect" corresponding to the element " 1 " of Q. More precisely, sketch the simplest example of how the order parameter changes as you wind around a loop encircling the point defect.
5B.2. Draw a "defect" which could correspond to the element "i σ^{x} " of $Q .{ }^{4}$
5B.3. What kind of defect do you get if you combine 4 of the "i σ^{x} " defects? As best you can, sketch a picture explaining your answer (though it may be hard to draw and visualize!).
5B.4. What happens if we try to move a " $\mathrm{i} \sigma^{y "}$ defect around an " $\mathrm{i} \sigma^{x}$ " defect?

[^1]
[^0]: ${ }^{1}$ Hint: If $\Gamma(\theta, t)=\cos \phi+\mathrm{i} \sin \phi n_{j} \sigma^{j}$, then it corresponds to a rotation by angle 2ϕ around an axis oriented along the unit vector n_{j}. If you know the generators T_{j} of the Lie algebra of $\mathrm{SO}(3)$ (or $\mathrm{SU}(2)$) in the spin- 1 representation, then how can you construct $\Gamma(\theta, t)$ in $\mathrm{SO}(3)$? You don't need to carry out all of the algebra, which gets messy.

[^1]: ${ }^{2}$ Hint: Define c, d and e as appropriate products of a and b, such that there is no non-trivial string $c d c c c e c{ }^{-1} d \cdots$ (e.g.) that can equal the identity.
 ${ }^{3}$ Hint: What complex matrix in $\mathrm{SU}(2)$ corresponds to a 180° rotation about an axis? Why is this important?
 ${ }^{4}$ Hint: For both this question and the next, it may be helpful to begin by thinking about the non-trivial defect in the ordinary nematic liquid crystal. Why do they become more complicated in the biaxial case?

