
PHYS 5040: Algebra and Topology in Physics Spring 2021

Homework 4

I Due: 11:59 PM, February 15. Submit electronically on Canvas.

I Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why
means a non-rigorous (but convincing) argument is acceptable.

Problem 1 (Emergent symmetry):30 Consider magnetism in a two-dimensional crystal with D12 symmetry.
The magnetization vector (Mx,My) is in an ordinary vector representation, with r corresponding to 60◦

rotation and s corresponding to reflection in x.
Let’s find possible expressions for a D12 invariant free energy F (Mx,My). One clever way we can do

this is to start with a “guess” function

f(Mx,My) = aM2
x + bM4

x + cM6
x , (1)

and to find our phenomenological free energy function as

F (Mx,My) =
1

12

∑
g∈D12

f(g · (Mx,My)). (2)

i. Show that F (Mx,My) must be D12-invariant.

ii. For the choice of f in (1), evaluate F (Mx,My) explicitly. Mathematica may help you do some symbolic
algebra.

iii. Assume b, c > 0. What happens to the location of the minimum of F if we decrease a from positive
to negative? A few words will suffice.

iv. Suppose |a| � b, c. Argue that near the minimum, it is reasonable to approximate that F (Mx,My)
is a quartic polynomial (i.e. you can approximate c ≈ 0).

v. What is the symmetry group of the quartic F (Mx,My)? Show that it is larger than D12.

The idea that emergent symmetry groups can arise in special regions of parameter space is a common
theme in much of modern theoretical physics.

Problem 2 (Dihedral symmetry in quantum mechanics): Consider a quantum mechanical non-relativistic
particle of mass m in two spatial dimensions, in a potential obeying V (x, y) = V (±x,±y) = V (y, x).

(a)20 This Hamiltonian is invariant under D8 symmetry, acting in the standard way on the coordinates
(x, y), which was described in Lectures 5 and 6.

i. Use the group action of D8 on the coordinates (x, y) to find g · f(x, y) for any g ∈ D8, and any
function f .

ii. Use the projection algorithm of Lecture 7 to show how to project any f onto any of the 5 irreps
of D8. An explicit formula will help you for later parts!
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(b)20 Consider a particle in a box, where

V (x, y) =

{
0 |x|, |y| ≤ 1

2L,
∞ otherwise

. (3)

i. Find the eigenvalues and eigenfunctions of H.

ii. For each eigenfunction, determine which irrep of D8 it belongs to.

iii. Does D8 representation theory explain all degeneracy in the Hamiltonian?

(c)15 Suppose we modify

V (x, y) =

{
0 |x| ≤ 1

2Lx, |y| ≤ 1
2Ly,

∞ otherwise
. (4)

Assume Lx 6= Ly.

i. Find the eigenvalues and eigenfunctions of H.

ii. Explain why the symmetry group is now Z2 × Z2.

iii. Classify all of the eigenfunctions of H according to ir-
reps of Z2 × Z2.

iv. Discuss how the degeneracies of part (b) are broken.
Confirm that the way that the irreps of D8 broke into
irreps of Z2 × Z2 is consistent with what we found in
Lecture 8.

Figure 1: The ammonia molecule. Note that
the 3 hydrogen atoms (in white) form an equi-
lateral triangle.

Problem 3 (Vibrational spectroscopy of ammonia): Consider the ammonia molecule NH3, shown in
Figure 1. The symmetry group of this molecule is D6 – like in the example of BH3 in Lecture 1. The
character table for D6 = S3 can be found in Zee II.3, or online!

(a)15 Let the displacement coordinates (away from the equilibrium shown in the figure) of the 3 H atoms be
x1 = (x1, y1, z1), x2 and x3; the N atom’s are x4. It will be useful to organize these coordinates into
vectors of the form (in bra-ket notation) x1 → |x1〉. This notation is useful because it will be valuable,
in this problem, to think of the vector space as a tensor product of a spatial part (|x〉, |y〉, |z〉) with
an atom number space (|1〉, |2〉, |3〉, |4〉).

i. How do the rotations/reflections which exchange atoms act on coordinates (x, y, z)? Call these
matrices P (g). If the Hs lie in the xy-plane, you could choose

P (r) =
1

2

 −1 −
√

3 0√
3 −1 0

0 0 2

 , P (s) =

 −1 0 0
0 1 0
0 0 1

 . (5)

ii. How does D6 act on atom numbers (namely, how are the atoms exchanged under symmetry
transformations)? Call these matrices M(g), and give explicit formulas for M(r) and M(s).

iii. Let R denote the 12-dimensional reducible representation of D6 acting on the vector space spanned
by |x1〉, . . . , |z4〉. Explain why we can interpret the 12× 12 matrix R(g), for g ∈ D6, as

R(g) = P (g)⊗M(g). (6)
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(b)10 Abstractly, the low energy dynamics of the molecule is captured by the Hamiltonian

H =
1

2

[
piM

−1
ij pj + qiKijqj

]
, (7)

with Mij a (diagonal) atomic mass matrix, and Kij some complicated matrix corresponding to the
couplings between the atomic displacements (collected as the 12-component vector qj , with conjugate
momenta pj). If we knew Mij and Kij , we could numerically determine the 12 normal mode oscillation
frequencies of our molecule. Remarkably, we can use group theory to learn quite a lot about the
possible frequencies, without knowing any further microscopic details! We’ll start by thinking about
the global, equilibrium-adjusting symmetries that we ignored before – translation and rotation.

i. Consider the vector (x, y, z) of spatial coordinates. In one or two sentences, argue that this vector
is in the reducible representation P = 1⊕ 2. Don’t worry about deriving this rigorously.

ii. Now consider the vector of angular momenta, (Jx, Jy, Jz). In one or two sentences, argue that
this breaks into 1⊕ 2.1

iii. Explain why global translation/rotation symmetry leads to 6 normal modes of the molecule having
zero vibrational frequency. To which representations will these zero modes belong?

(c)20 We’re now ready to determine the qualitative structure of the non-zero normal modes.

i. Show that χ(R)(1) = 12, χ(R)(r) = 0, and χ(R)(s) = 2.2

ii. Deduce how many copies of each irrep are contained within R.

iii. Predict the number of distinct non-zero vibrational frequencies of NH3, along with any symmetry-
enforced degeneracies.

iv. Compare your predictions to the (experimentally) known vibrational spectrum of NH3, which you
should be able to find online. While we haven’t discussed the jargon behind the chemistry/solid-
state group theory notation you may encounter, you should be able to at least confirm your
predictions about the number of distinct modes.

If you are stuck on this problem, reading through Zee III.2 is a good place to start. Watch out though;
his treatment of the calculation analogous to part (a) is a bit sloppy and seems to fail for this realistic
molecule.

1Hint: What happens to Jz under reflection?
2Hint: tr(A⊗B) = tr(A)tr(B).
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