Homework 5

- ▶ Due: 11:59 PM, February 22. Submit electronically on Canvas.
- ▶ **Prove/show** means to provide a mathematically rigorous proof. **Argue/describe/explain** why means a non-rigorous (but convincing) argument is acceptable.

Problem 1 (Selection rules for BH₃): Consider the molecule BH₃, which we discussed in Lecture 1. In full 3d space, the symmetry group of this molecule is $D_6 \times \mathbb{Z}_2$, with the extra \mathbb{Z}_2 associated to reflections in the z-direction. The character table of $D_6 = S_3$ can be found in Zee II.3, and will be needed for this problem. Also needed is the fact that vectors (x, y) of coordinates in the plane transform in the 2 of D_6 . You can denote r, s as the usual generators of D_6 , and let t denote the reflection in the z-direction.

- 10 (a) We begin by developing the representation theory for our symmetry group.
 - i. Follow the example in Lecture 9 to determine the 6 irreps of $D_6 \times \mathbb{Z}_2$. I'll use the natural generalization of our notation there in what follows.
 - ii. Write out the full character table for this group.
 - iii. Explain why the dipole moment (p_x, p_y, p_z) belongs to the representation $\mathbf{1}_- \oplus \mathbf{2}_+$.
- 15 (b) The electronic orbitals in BH_3 can be classified according to the 6 irreps found above.
 - i. Find the selection rules for electromagnetic radiation (in the dipole approximation). Namely, between orbitals in which pairs of irreps are transitions allowed?¹
 - ii. Do you think the selection rules are more or less restrictive than they would be for a more symmetric object, like the isotropic hydrogen atom?
- **Problem 2** (SL(2, \mathbb{R})): Consider the set of all 2 × 2 real matrices of determinant 1: this is called

$$SL(2,\mathbb{R}) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a, b, c, d \in \mathbb{R}, \ ad - bc = 1. \right\}.$$

$$(1)$$

- i. Show that $SL(2,\mathbb{R})$ is a group under matrix multiplication. Argue that it is also a Lie group.
- ii. Show that, for infinitesimal ϵ , if

$$M = 1 + \epsilon N + \mathcal{O}(\epsilon^2) \in \mathrm{SL}(2, \mathbb{R}), \tag{2}$$

then tr(N) = 0. Conclude that there are 3 generators of the Lie algebra of $SL(2, \mathbb{R})$.

iii. Find the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$.

¹*Hint:* The dipole is in a reducible representation, so you can think of determine the selection rules for dipoles in the 1_{-} irrep alone, or the 2_{+} irrep alone, first. Why are the total selection rules the sum of the selection rules for each of the 2 irreps alone?

Problem 3 (Lie groups with one generator): In this problem, we'll study the representation theory of Lie groups with one generator.

- (a) Consider the additive group R. This is a Lie group, generated by your favorite non-zero real number a. Show that all the irreducible representations R of this Lie group are characterized by an arbitrary complex number λ ≠ 0, with R(a) = λ^a.
- 15 (b) Consider the additive group \mathbb{R}/\mathbb{Z} , which we discussed on Homework 1.
 - i. Explain why $\mathbb{R}/\mathbb{Z} = SO(2)$; you can use results from Lecture 10 if desired.
 - ii. Find all the irreps of \mathbb{R}/\mathbb{Z} .

Problem 4 (Piezoelectricity): Certain crystals can develop electrical polarization when they are strained – this is called **piezoelectricity**, and is responsible for numerous practical technologies, including the timers in "older" wristwatches.

Mechanical strain of a crystal is parameterized by a symmetric tensor s_{ij} ; polarizability of a crystal is a two dimensional vector P_i . Hence, in a piezoelectric crystal, we expect to see

$$P_i = A_{i,jk} s_{jk} \tag{3}$$

with the tensor coefficient $A_{i,jk}$ invariant under the symmetry group G of the crystal.

In this problem, we'll consider two dimensional crystals with dihedral symmetry. Let 2 denote the "vector" irrep (in which P_i transforms).

- 15 (a) When is piezoelectricity possible?
 - i. Explain why piezoelectricity is possible only if $2 \otimes 2 \otimes 2$ contains a trivial representation (1).
 - ii. Show that crystals with D_8 symmetry cannot be piezoelectric.
 - iii. Show that crystals with D_6 symmetry can be piezoelectric.

15 (b) In a crystal with D₆ symmetry, determine the form of the piezoelectric tensor $A_{i,jk}$.²

²*Hint:* Calculate Clebsch-Gordan coefficients!