Homework 5

- Due: 11:59 PM, February 22. Submit electronically on Canvas.
- Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why means a non-rigorous (but convincing) argument is acceptable.

Problem 1 (Selection rules for BH_{3}): Consider the molecule BH_{3}, which we discussed in Lecture 1. In full 3d space, the symmetry group of this molecule is $\mathrm{D}_{6} \times \mathbb{Z}_{2}$, with the extra \mathbb{Z}_{2} associated to reflections in the z-direction. The character table of $\mathrm{D}_{6}=\mathrm{S}_{3}$ can be found in Zee II.3, and will be needed for this problem. Also needed is the fact that vectors (x, y) of coordinates in the plane transform in the 2 of D_{6}. You can denote r, s as the usual generators of D_{6}, and let t denote the reflection in the z-direction.
(a) We begin by developing the representation theory for our symmetry group.
i. Follow the example in Lecture 9 to determine the 6 irreps of $D_{6} \times \mathbb{Z}_{2}$. I'll use the natural generalization of our notation there in what follows.
ii. Write out the full character table for this group.
iii. Explain why the dipole moment $\left(p_{x}, p_{y}, p_{z}\right)$ belongs to the representation $\mathbf{1}_{-} \oplus \mathbf{2}_{+}$.
(b) The electronic orbitals in BH_{3} can be classified according to the 6 irreps found above.
i. Find the selection rules for electromagnetic radiation (in the dipole approximation). Namely, between orbitals in which pairs of irreps are transitions allowed? ${ }^{1}$
ii. Do you think the selection rules are more or less restrictive than they would be for a more symmetric object, like the isotropic hydrogen atom?

Problem $2(\mathrm{SL}(2, \mathbb{R}))$: Consider the set of all 2×2 real matrices of determinant 1: this is called

$$
\mathrm{SL}(2, \mathbb{R}):=\left\{\left(\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}, \quad a d-b c=1\right.
$$

i. Show that $\mathrm{SL}(2, \mathbb{R})$ is a group under matrix multiplication. Argue that it is also a Lie group.
ii. Show that, for infinitesimal ϵ, if

$$
\begin{equation*}
M=1+\epsilon N+\mathrm{O}\left(\epsilon^{2}\right) \in \mathrm{SL}(2, \mathbb{R}) \tag{2}
\end{equation*}
$$

then $\operatorname{tr}(N)=0$. Conclude that there are 3 generators of the Lie algebra of $\mathrm{SL}(2, \mathbb{R})$.
iii. Find the Lie algebra $\mathfrak{s l}(2, \mathbb{R})$.

[^0]Problem 3 (Lie groups with one generator): In this problem, we'll study the representation theory of Lie groups with one generator.

15 (a) Consider the additive group \mathbb{R}. This is a Lie group, generated by your favorite non-zero real number a. Show that all the irreducible representations R of this Lie group are characterized by an arbitrary complex number $\lambda \neq 0$, with $R(a)=\lambda^{a}$.

15 (b) Consider the additive group \mathbb{R} / \mathbb{Z}, which we discussed on Homework 1.
i. Explain why $\mathbb{R} / \mathbb{Z}=\mathrm{SO}(2)$; you can use results from Lecture 10 if desired.
ii. Find all the irreps of \mathbb{R} / \mathbb{Z}.

Problem 4 (Piezoelectricity): Certain crystals can develop electrical polarization when they are strained - this is called piezoelectricity, and is responsible for numerous practical technologies, including the timers in "older" wristwatches.

Mechanical strain of a crystal is parameterized by a symmetric tensor $s_{i j}$; polarizability of a crystal is a two dimensional vector P_{i}. Hence, in a piezoelectric crystal, we expect to see

$$
\begin{equation*}
P_{i}=A_{i, j k} s_{j k} \tag{3}
\end{equation*}
$$

with the tensor coefficient $A_{i, j k}$ invariant under the symmetry group G of the crystal.
In this problem, we'll consider two dimensional crystals with dihedral symmetry. Let 2 denote the "vector" irrep (in which P_{i} transforms).
(a) When is piezoelectricity possible?
i. Explain why piezoelectricity is possible only if $\mathbf{2} \otimes \mathbf{2} \otimes \mathbf{2}$ contains a trivial representation (1).
ii. Show that crystals with D_{8} symmetry cannot be piezoelectric.
iii. Show that crystals with D_{6} symmetry can be piezoelectric.

15
(b) In a crystal with D_{6} symmetry, determine the form of the piezoelectric tensor $A_{i, j k} .{ }^{2}$

[^1]
[^0]: ${ }^{1}$ Hint: The dipole is in a reducible representation, so you can think of determine the selection rules for dipoles in the $\mathbf{1}_{-}$ irrep alone, or the $\mathbf{2}_{+}$irrep alone, first. Why are the total selection rules the sum of the selection rules for each of the 2 irreps alone?

[^1]: ${ }^{2}$ Hint: Calculate Clebsch-Gordan coefficients!

