Homework 6

- Due: 11:59 PM, March 1. Submit electronically on Canvas.
- Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why means a non-rigorous (but convincing) argument is acceptable.

Problem 1: Consider 3 vectors (which transform in the $\mathbf{3}$, or spin- 1 irrep) of $\mathrm{SO}(3): A_{i}, B_{i}$ and C_{i}.
i. Evaluate $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}$, for $\mathrm{SO}(3)$.
ii. Using Einstein's tensor notation, write down all possible ways to get a scalar (1 under $\mathrm{SO}(3)$) by combining the 3 vectors above in an $\mathrm{SO}(3)$ invariant way.
iii. Using Einstein's tensor notation, write down all possible ways to get a vector ($\mathbf{3}$ under $\mathrm{SO}(3)$) by combining the 3 vectors above in an $\mathrm{SO}(3)$ invariant way.

Problem 2 (The hyperfine interaction): A textbook problem in quantum mechanics involves the interaction of the electron and proton spins in the hydrogen atom. Let \mathbf{S}_{1} denote the electron spin, and \mathbf{S}_{2} the proton spin; each is spin- $\frac{1}{2}$. Consider the Hamiltonian

$$
\begin{equation*}
H=A \mathbf{S}_{1} \cdot \mathbf{S}_{2}+B\left(S_{1 z}+S_{2 z}\right) \tag{1}
\end{equation*}
$$

10 (a) Begin by setting $B=0$.
i. Write down the eigenvalues and eigenvectors of H. You do not need to derive them (you may even have memorized them!).
ii. Explain, in terms of group/representation theory, why all textbooks solve this problem the same way: first writing H in terms of the total spin operator, $\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}$.
iii. Explain why the spectrum of H is as generic as possible (given symmetry).
(b) Now, consider the case $B \neq 0$.
i. What are the eigenvalues and eigenvectors of H ?
ii. What is the symmetry group under which H is invariant? ${ }^{1}$
iii. Explain, in terms of group/representation theory, why there is no longer any degeneracy in H.

20 Problem 3: Consider the irreducible representations of $\mathrm{O}(2)$, which we labeled as $U_{0}^{ \pm}$and R_{1}, R_{2}, \ldots in Lecture 12. Letting $R_{0}:=U_{0}^{+} \oplus U_{0}^{-}$, determine $R_{n} \otimes R_{m}$ for any $n, m \geq 0 .{ }^{2}$

[^0]Problem 4 (D_{12}-invariant polynomials): Consider the vector space \mathcal{P} of all polynomials in two variables x and y :

$$
\begin{equation*}
\mathcal{P}=\operatorname{span}\left(1, x, y, x^{2}, x y, y^{2}, \ldots\right) . \tag{2}
\end{equation*}
$$

Consider the natural action of the dihedral group D_{12} on this space, with reflection s changing the sign of y, and rotation r corresponding to a 60° coordinate rotation.
(a) Let \mathcal{P}_{n} denote the subspace of $n^{\text {th }}$ order polynomials, of dimension $n+1$. Note that

$$
\begin{equation*}
\mathcal{P}=\mathcal{P}_{0} \oplus \mathcal{P}_{1} \oplus \mathcal{P}_{2} \oplus \cdots \tag{3}
\end{equation*}
$$

How do these vector spaces break up into irreps of D_{12} ?
i. Explain why \mathcal{P}_{n} is (a vector space corresponding to) a representation of $\mathrm{O}(2)$.
ii. Define $z=x+\mathrm{i} y$ and $\bar{z}=x-\mathrm{i} y$. Show that under a generic rotation around the origin by angle $\theta, z \rightarrow z \mathrm{e}^{\mathrm{i} \theta}$ and $\bar{z} \rightarrow \bar{z} \mathrm{e}^{-\mathrm{i} \theta}$.
iii. What does a reflection in $\mathrm{O}(2)[y \rightarrow-y, x \rightarrow x]$ do to z and \bar{z} ?
iv. Write the linearly independent vectors (polynomials) in \mathcal{P}_{n} in terms of z and \bar{z}.
v. Let M_{θ} denote a rotation by angle θ, and s denote the reflection operation in $\mathrm{O}(2)$. Explain why the following is a representation of $\mathrm{O}(2)$ isomorphic to R_{n} (defined in Lecture 12): ${ }^{3}$

$$
M_{\theta}=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} n \theta} & 0 \tag{4}\\
0 & \mathrm{e}^{-\mathrm{i} n \theta}
\end{array}\right), \quad s=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(You do not need to check that the multiplication rules of $\mathrm{O}(2)$ are obeyed; they are!)
vi. Explain how \mathcal{P}_{n} decomposes into irreps of $\mathrm{O}(2)$.
vii. Explain how \mathcal{P}_{n} decomposes into irreps of D_{12}.
(b) Now, consider a two dimensional isotropic quantum harmonic oscillator

$$
\begin{equation*}
H_{0}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{1}{2}\left(x^{2}+y^{2}\right) . \tag{5}
\end{equation*}
$$

Here we are working in units where $\hbar=m=\omega=1$. Recall that the eigenfunctions of H_{0} can be written (in part) in terms of Hermite polynomials.
i. Explain why H is invariant under a "large" symmetry group G, with $\mathrm{D}_{12} \leq G$.
ii. Consider the 4 eigenvectors of H with energy $E=4$. Show that they may be chosen to form irreps of D_{12}, and give explicit expressions for the eigenvectors that transform in appropriate irreps (they do not need to be normalized).
iii. Suppose that we perturb H_{0} with a generic small perturbation $H^{\prime}: H=H_{0}+\delta H^{\prime}$, with $\delta \ll 1$. Assume that H^{\prime} is also D_{12} invariant. Doing no further calculations, explain how the degeneracy of the $E=4$ level will generically be lifted, and find (at leading order in δ) the eigenvectors of H.

15 Problem 5 (Crystal field splitting in a cubic crystal): An atom has 5 degenerate d-states (with angular momentum $l=2$). Now consider this atom when placed in a cubic crystal with symmetry group $\mathrm{O}_{\mathrm{h}}=$ $\mathrm{S}_{4} \times \mathbb{Z}_{2}$, as discussed in Lecture 9. Based on symmetry considerations alone, into how many distinct energy levels do you expect these d-states to be split? ${ }^{4}$

[^1]
[^0]: ${ }^{1}$ Hint: $\left[H, S_{z}\right]=0$.
 ${ }^{2}$ Hint: Let $M_{\theta} \in \mathrm{O}(2)$ denote the rotation by θ degrees. Evaluate characters $\chi^{(R)}\left(M_{\theta}\right)$ for all of the irreps, and then for the product representation $R_{n} \otimes R_{m}$.

[^1]: ${ }^{3}$ Hint: Check characters!
 ${ }^{4}$ Hint: What is $\mathbf{3} \otimes \mathbf{3}$ in $\mathrm{SO}(3)$? What about in S_{4} ?

