Homework 7

- Due: 11:59 PM, March 8. Submit electronically on Canvas.
- Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why means a non-rigorous (but convincing) argument is acceptable.

20 Problem 1: Find 5 distinct irre
What is the dimension of each?

Problem 2 (Hidden symmetry of the quantum harmonic oscillator): Consider the three dimensional quantum harmonic oscillator

$$
\begin{equation*}
H=\frac{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2 m}+\frac{m \omega^{2}}{2}\left(x^{2}+y^{2}+z^{2}\right) \tag{1}
\end{equation*}
$$

(a) Let's review the solution of this problem. We begin by writing H in terms of raising and lowering operators:

$$
\begin{equation*}
H=\hbar \omega\left(\frac{3}{2}+a_{i}^{\dagger} a_{i}\right) \tag{2}
\end{equation*}
$$

We are using the Einstein summation convention on repeated indices here $(i \in\{x, y, z\})$.
i. Find the energy levels $E_{n}(n=0,1,2, \ldots)$ of H.
ii. Show that the degeneracy of energy level E_{n} is

$$
\begin{equation*}
D(n)=\frac{(n+1)(n+2)}{2} \tag{3}
\end{equation*}
$$

20 (b) The degeneracy $D(n)$ is much larger than what could be predicted by the rotational symmetry ($\mathrm{SO}(3)$) of this problem on its own. Is there a hidden symmetry group responsible for this large degeneracy?
i. For which matrices $U_{i j}$ does the transformation

$$
\begin{align*}
a_{i} & \rightarrow U_{i j} a_{j} \tag{4a}\\
a_{i}^{\dagger} & \rightarrow a_{j}^{\dagger} U_{j i}^{\dagger} \tag{4b}
\end{align*}
$$

leave H invariant? What is the resulting symmetry group of H ?
ii. Use representation theory to account for the degeneracy $D(n)$ found above. You do not need to show in detail how the wave functions of the oscillator fit into the irreps, only that the degeneracy $D(n)$ is precisely accounted for by the usual counting of symmetry-enforced degeneracies.

Problem 3 (Mesons and baryons): The earliest elementary particles that were discovered can be thought of as consisting of combinations of 3 different flavors of quarks or antiquarks. These 3 different kinds of quarks: up (u), down (d) and strange (s), can be thought of as forming a $\mathbf{3}=(1,0)$ irrep of some approximate $\mathrm{SU}(3)$ flavor symmetry. The antiquarks are similar, but form a $\overline{\mathbf{3}}=(0,1)$ irrep. Although this is not an exact symmetry of nature, it proved quite valuable historically to treat this symmetry as approximate and to organize the elementary particles according to irreps of $\operatorname{SU}(3)$. In this problem, we will get some idea of how this all worked out.

In what follows, it will be useful to use the fact that both quarks and antiquarks are spin- $\frac{1}{2}$ fermions ($\mathbf{2}$ of $\mathrm{SU}(2)$ rotation symmetry). It will also be useful to keep track of the electric charges of the quarks:

$$
\begin{equation*}
q_{\mathrm{u}}=\frac{2}{3} e, \quad q_{\mathrm{d}}=q_{\mathrm{s}}=-\frac{1}{3} e . \tag{5}
\end{equation*}
$$

Here e is the charge of the proton. Antiquarks of a given flavor have opposite electric charge to the corresponding quark flavor.
(b) Baryons are particles consisting of three quarks. The baryonic wave function is rather complicated, consisting of four components:

$$
\begin{equation*}
\mid \text { baryon }\rangle=\mid \text { position }\rangle \otimes \mid \text { color }\rangle \otimes \mid \text { flavor }\rangle \otimes \mid \text { spin }\rangle \tag{6}
\end{equation*}
$$

The 3 quarks making up a baryonic particle are indistinguishable fermions (therefore, the overall wave function should be antisymmetric under exchange of any two quarks). The position-space wave function |position \rangle will be symmetric in a particle's ground state, while \mid color \rangle will be antisymmetric. Therefore \mid flavor $\rangle \otimes \mid$ spin \rangle must be a symmetric wave function under particle exchange.
i. Show that baryonic particles must have either total spin $j=\frac{3}{2}$ or $j=\frac{1}{2}$.
ii. Suppose that we have a baryon of spin- $\frac{3}{2}$. By constructing the state with maximal z-spin explicitly (in the "uncoupled" basis of 3 quark spins), conclude that |spin〉 should be a symmetric wave function under the quark exchange operation, when $j=\frac{3}{2}$.
iii. Show that the possible $\operatorname{SU}(3)$ irreps of a baryon are $\mathbf{1 0}=(3,0), \mathbf{8}=(1,1)$, or $\mathbf{1}=(0,0)$.
iv. Conclude that there will be a set of 10 baryonic particles of spin- $\frac{3}{2}$. Determine the possible charges of these particles, and how many particles must have each charge.
v. Show that the 1's flavor wave functions must be fully antisymmetric. You can do this with a one sentence argument!
vi. Show that it is not possible to have a baryonic particle in the $\mathbf{1}$ irrep of $\operatorname{SU}(3)$. Again, there is a very short argument!
vii. There is also a family of spin $-\frac{1}{2}$ baryons in the $\mathbf{8}$ of $S U(3)$. This is a bit more tedious to show, so you do not need to do it. What are the possible electric charges of these particles? ${ }^{2}$

[^0]15 Problem 4 (Self-dual and anti-self-dual tensors): Consider the group $\mathrm{SO}(2 n)$ with n a positive integer. Consider the representation \mathcal{A} consisting of rank- n fully antisymmetric tensors

$$
\begin{equation*}
A_{i_{1} i_{2} i_{3} \cdots i_{n}}=-A_{i_{2} i_{1} i_{3} \cdots i_{n}}=\cdots=-A_{i_{n} i_{2} i_{3} \cdots i_{1}} . \tag{7}
\end{equation*}
$$

i. Define

$$
\begin{equation*}
B_{i_{1} \cdots i_{n}}=\frac{1}{n!} \epsilon_{i_{1} \cdots i_{n} j_{1} \cdots j_{n}} A_{j_{1} \cdots j_{n}} . \tag{8}
\end{equation*}
$$

Show that

$$
\begin{equation*}
A_{i_{1} \cdots i_{n}}=\frac{(-1)^{n}}{n!} \epsilon_{i_{1} \cdots i_{n} j_{1} \cdots j_{n}} B_{j_{1} \cdots j_{n}} \tag{9}
\end{equation*}
$$

ii. Conclude that for an appropriate choice of $\alpha=1$, i which depends on n, that

$$
\begin{equation*}
\frac{1}{n!} \epsilon_{i_{1} \cdots i_{n} j_{1} \cdots j_{n}}\left(A_{j_{1} \cdots j_{n}} \pm \alpha B_{j_{1} \cdots j_{n}}\right)= \pm \alpha^{-1}\left(A_{i_{1} \cdots i_{n}} \pm \alpha B_{i_{1} \cdots i_{n}}\right) \tag{10}
\end{equation*}
$$

iii. Conclude that \mathcal{A} is a reducible representation, that splits up into two representations corresponding to self-dual tensors $(+)$ and anti-self-dual tensors (-). The self-dual and anti-self-dual representations turn out to be irreducible.
iv. What is the dimension of the self-dual representation?

15 Problem 5 (Chiral anomaly): In four dimensional quantum field theory, it is possible to have a theory of chiral fermions, coupled to gauge fields (generalizations of electromagnetic fields). These theories turn out to be "sick" (classical symmetries fail to be symmetries of the full quantum theory) if a certain anomaly coefficient, associated with the symmetry group G of the system, does not vanish.

The group theoretic essence of the chiral anomaly boils down to the following simple calculation. Let T^{a} denote the generators of the group G, which we'll assume is a Lie group, in whichever (possibly reducible) representation R is associated with the matter content. Then, the chiral anomaly coefficients are defined as

$$
\begin{equation*}
\mathcal{A}^{a b c}:=\operatorname{tr}\left(T^{a} T^{b} T^{c}+T^{a} T^{c} T^{b}\right) \tag{11}
\end{equation*}
$$

We want to have all $\mathcal{A}^{a b c}=0$ to have an anomaly free theory.
Consider a gauge theory with group $G=\mathrm{SO}(n)$. Find all possible n for which the chiral anomaly may be non-vanishing. ${ }^{3}$

The fact that the chiral anomalies necessarily vanish for so many of the Lie groups $\mathrm{SO}(n)$ makes them very popular in studies of grand unification in particle physics.

[^1]
[^0]: ${ }^{1}$ Hint: The combination ū has charge $q_{\mathrm{u}}-q_{\mathrm{u}}$, ud has charge $q_{\mathrm{u}}-q_{\mathrm{d}}$, etc.
 ${ }^{2}$ Hint: If you don't want to construct a basis for an $\mathbf{8}$ inside $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}$, figure out the charges of all 27 "particles" possible within $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}$, and subtract out the charges of particles that transform in the $\mathbf{1 0}$ and $\mathbf{1}$ irreps.

[^1]: ${ }^{3}$ Hint: To do this, I suggest you write the generators in terms of $T^{i j}=-T^{j i}$. Then \mathcal{A} is a 6 index object, with certain symmetries required upon exchanging the 6 indices. Since only $\delta^{i j}$ and the Levi-Civita tensor are $\mathrm{SO}(n)$ invariant, it must be possible to express \mathcal{A} in terms of these tensors alone. When is that possible?

