
PHYS 5040: Algebra and Topology in Physics Spring 2021

Homework 8

I Due: 11:59 PM, March 15. Submit electronically on Canvas.

I Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why
means a non-rigorous (but convincing) argument is acceptable.

Problem 1 (Nematic liquid crystals):25 A nematic liquid crystal molecule can be thought of as a rod whose
“head” and “tail” are equivalent. Upon fixing the center of the rod, the space of all possible configurations
of the nematic corresponds to the set of all lines passing through the origin in three dimensional space,
called RP2.

i. Explain why
RP2 := (R3 − {0})/ ∼, (1)

where 0 denotes the origin of R3, and the equivalence relation ∼ identifies x ∼ λx for any λ 6= 0.

ii. Explain why RP2 can also be thought of as the sphere S2, with opposite points identified.1

iii. Show how to build RP2 as either a CW complex or a simplicial complex, whichever you prefer.2

Problem 2 (From polyhedra to solid-state physics and chemistry): A regular polyhedron is a two-
dimensional shape, made out of M identical regular polygons of n sides. Here M and n are, a priori,
arbitrary positive integers. Let us also demand that in our regular polyhedron, any vertex can (by
appropriate rotations) be mapped to any other vertex.

(a)25 Platonic solids are two dimensional surfaces with Euler characteristic χ = 2, obeying all of the above
properties. Prove that there are 5 Platonic solids.3 What are they? (If you can’t figure this out from
first principles, at least look up the answer for later parts of the problem!)

(b)15 Now, let’s turn to solid-state physics. How many regular crystalline lattices (periodic tilings of the
plane) exist in two dimensions, which can be built out of regular polygons? Find the answer by
generalizing the method of part (a) to the 2-torus.

(c)45 The point group of a non-linear molecule in three spatial dimensions (or of the unit cells – periodic
motifs that make up a solid) must correspond to a finite subgroup G ≤ SO(3). G corresponds to
the rotations that leave the molecule invariant. Remarkably, we can completely classify all possible
subgroups G!

Only basic group theory from Lectures 1-4 are needed for this part, together with the fact (which you
do not need to prove) that all non-identity elements in SO(3) can be thought of as rotations by angle
0 < θ < 2π around an axis (line passing through the origin of three-dimensional space). Let S2 be
the unit sphere (x2 + y2 + z2 = 1); SO(3) acts on S2 by rotating the coordinates in the standard way!

Let n denote the finite number of elements in the subgroup G.

1Hint: x2 + y2 + z2 = 1 is an embedding of S2 into R3. What does ∼ do to this embedding?
2Hint: First, think about how to build a CW complex for S2 such that two opposite points on the sphere always correspond

to different cells.
3Hint: First show that V = αF and E = βF ; how can you constrain α and β?
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i. Let g ∈ G be a non-identity element. Show that there are exactly two points on the sphere which
are left invariant by the rotation g: in other words, g · p = p for p ∈ S2 has two solutions.

ii. Let V be the set of all points on S2 that are left invariant by at least one non-trivial rotation in
G. Show that the action of rotations in G is a well-defined group action on V : in other words, if
p ∈ V and g ∈ G, then g · p ∈ V .4

iii. Consider a point p which is left fixed by some non-identity g; let Hp be the stabilizer group (or
little group, to physicists) of point p. Show that Hp is isomorphic to Zm, for some integer m
dividing n. We then say that p has order m.

iv. Let vm be the number of points in V whose stabilizer group is isomorphic to Zm. Show that n/m
must be an integer, and that n/m also divides vm.5

v. By counting the number of non-trivial rotations in G by first summing together the number of
rotations that leave points p of order m invariant, show that there exist non-negative integers
k2, k3, k4, . . . such that

2− 2

n
=

∞∑
m=2

(
1− 1

m

)
km. (2)

vi. Show that

1 <
∞∑

m=2

km < 4. (3)

vii. Noting that km = 0 if m does not divide n, conclude that there is only one infinite family of
solutions to (2) with

∑
k = 2: kq = 2δn,q, for any n. Explain why the resulting symmetry group

G is isomorphic to Zm (for m ≥ 2).

viii. Construct an infinite family of solutions to (2) with
∑
k = 3, where the resulting symmetry group

G is isomorphic to D2m (m ≥ 2).

ix. Show that there are three exceptional solutions to (2) obeying
∑
k = 3, which do not fall into

the categories above: one with n = 12, one with n = 24, and one with n = 60. As part of your
solution, rule out the existence of all other point groups.

This remarkable construction gives us a complete classification of all possible rotation symmetries
in three dimensions! This is why books on chemistry and solids can exhaustively list all possible
characters and irreducible representations for molecular orbitals, etc.

(d)10 The results of parts (a) and (c) are deeply interwined. Indeed, every Platonic solid has a point group
(rotational symmetry group) G, not isomorphic to either Zn or D2n for any n. (Think about why this
has to be the case!)

i. Prove that the point groups of the octahedron Goct and the cube Gcube are isomorphic.6

A similar proof (which you do not need to show) reveals that the dodecahedron and icosahedron have
the same point group, and that the tetrahedron can have its own point group.

ii. Argue that the 3 “exceptional” point groups from part (c) must be the point groups of the Platonic
solids.

4Hint: Let h · p = p. What group element can you construct that leaves h · p invariant?
5Hint: Let p be one of these points. How many different points in V can we find by evaluating g · p? What do we know

about each of these points? Lecture 4 may be useful.
6Hint: Prove that Goct ≤ Gcube by showing that every rotation of an octahedron that leaves it invariant, must also leave a

cube invariant. Where might this cube be, geometrically? Then, do the same thing with the role of the cube and octahedron
exchanged.
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