Homework 9

- Due: 11:59 PM, March 29. Submit electronically on Canvas.
- Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why means a non-rigorous (but convincing) argument is acceptable.

20 Problem 1 (Thermodynamics): The "infinitesimal" form of the first law of thermodynamics is sometimes written as

$$
\begin{equation*}
\mathrm{d} E=\delta Q-\delta W \tag{1}
\end{equation*}
$$

Here $\mathrm{d} E$ is the infinitesimal change in the internal energy E under a change in entropy $S \rightarrow S+\mathrm{d} S$ and volume $V \rightarrow V+\mathrm{d} V$. The infinitesimal change in the heat absorbed by the system is given by

$$
\begin{equation*}
\delta Q=T \mathrm{~d} S, \tag{2}
\end{equation*}
$$

while the mechanical work done by the system is

$$
\begin{equation*}
\delta W=P \mathrm{~d} V . \tag{3}
\end{equation*}
$$

Here T and P are temperature and pressure, respectively.
Using the language of differential forms, we can interpret $\mathrm{d} E, \delta W$ and δQ as 1-forms on a manifold characterized by a choice of local coordinates, S and V.
1.1. In thermodynamics, the energy $E(S, V)$ is a well-defined (single-valued) function of S and V. Hence, we expect $\mathrm{d} E$ is an exact differential. Conclude formulas relating T and P to E, S and V.
1.2. Use the fact that $\mathrm{d}^{2} E=0$ to obtain a thermodynamic Maxwell relation, relating T and P to each other.
1.3. Let γ be a closed thermodynamic cycle (a trajectory through the space of state variables, such as S and $V)$. The total work done by the system is given by

$$
\begin{equation*}
W=\int_{\gamma} \delta W=\int_{\gamma} P \mathrm{~d} V . \tag{4}
\end{equation*}
$$

Generally, $W \neq 0$. In thermodynamics textbooks, it is often stated that δW and δQ are "inexact differentials". Mathematically, what does that imply?
1.4. In the language of differential forms, (1) does not depend on a choice of "coordinates" on the thermodynamic manifold. Explain why if we define the free energy

$$
\begin{equation*}
F=E-T S \tag{5}
\end{equation*}
$$

the exact differential $\mathrm{d} F$ leads us to a new "thermodynamics", where T and V become a natural choice of local coordinates. What constraints do we obtain on P and S ?

15
2.1. What well known shape is this manifold homeomorphic (topologically equivalent) to?
2.2. As we'll learn to show later, M is topologically non-trivial. Despite this fact, find a single coordinate chart that covers all of M.

4A: Let's begin by describing an "ordinary" (continuous) symmetry in the language of differential forms. Consider a theory with a single conserved charge, where the continuity equation is

$$
\begin{equation*}
\partial_{t} \rho+\partial_{i} J_{i}=0 \tag{7}
\end{equation*}
$$

4A.1. Define the current 1-form $J:=\rho \mathrm{d} t+J_{i} \mathrm{~d} x_{i}$. Write (7) using differential forms.
4A.2. Consider the dynamics of this conserved charge on spacetime manifold $M \times \mathbb{R}$, where M represents space $\left(x_{i}\right)$ and \mathbb{R} represents time t. Assuming that charge does not flow in/out at spatial infinity, use Stokes' Theorem to show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{M} * J=0 \tag{8}
\end{equation*}
$$

What physical quantity does this integral represent?
4A.3. In quantum field theory, the main object of theoretical interest is the following:

$$
\begin{equation*}
Z[A]:=\left\langle\exp \left[\int A \wedge * J\right]\right\rangle \tag{9}
\end{equation*}
$$

Here the 1-form A represents a classical background gauge field, while J is a quantum operator. $\langle\cdots\rangle$ represents a quantum expectation value (which plays no role in this problem). The integral is performed over the entire spacetime manifold. Argue that if charge is conserved (namely if (7) holds - do not fuss over J being an operator), then $Z[A]$ must be "gauge invariant": if λ is an arbitrary function (0-form),

$$
\begin{equation*}
Z[A]=Z[A+\mathrm{d} \lambda] . \tag{10}
\end{equation*}
$$

Problem 3: Let ω_{1} be a q-form and ω_{2} be an r-form. Show that

$$
\begin{equation*}
\mathrm{d}\left(\omega_{1} \wedge \omega_{2}\right)=\mathrm{d} \omega_{1} \wedge \omega_{2}+(-1)^{q} \omega_{1} \wedge \mathrm{~d} \omega_{2} . \tag{6}
\end{equation*}
$$

Problem 4 (Higher form symmetries): A recent topic of some interest in theoretical physics is the existence of higher form symmetries.

4B: To construct a theory with a higher form symmetry, we can try to reverse the logic above. Suppose that you have a quantum theory which you can couple to a $(p+1)$-form A, such that (10) holds. We then say that we have a p-form symmetry.

4B.1. What object must λ be in order for this construction to make sense?
4B.2. If (9) holds, what must the object J be?
4B.3. What is the generalization of the conservation law (7)?
4B.4. Argue that there is an interesting natural generalization of (8), if we replace the integral over all of space M with an integral over some (possibly) lower dimensional closed surface Σ in M (namely, a surface Σ with boundary $\partial \Sigma$ the empty set). What dimension is Σ ?

4C: As an interesting example of a higher form symmetry, we turn to ordinary electromagnetism. For simplicity, you can focus on electromagnetism in $3+1$ spacetime dimensions.

4C.1. If F represents the Maxwell tensor, show that $* F$ is the current of a 1 -form symmetry.
4C.2. Physically interpret the conserved quantities associated with this 1 -form symmmetry. ${ }^{1}$
Problem 5 (K3 surfaces): In string theory, a family of 4-dimensional manifolds called K3 surfaces have wide-ranging importance. In this problem, we will sketch out one construction of a K3 surface.

5A: We begin with a discussion of complex projective space $\mathbb{C P}^{n}$, which is defined to be

$$
\begin{equation*}
\mathbb{C P}^{n}:=\left(\mathbb{C}^{n+1}-\mathbf{0}\right) / \sim \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{n+1}\right) \sim \lambda\left(z_{1}, \ldots, z_{n+1}\right), \quad(\lambda \neq 0) \tag{12}
\end{equation*}
$$

5A.1. Argue that $\mathbb{C P}^{n}$ is a manifold which admits an atlas with $n+1$ charts. What are they?
5A.2. What is the dimension of $\mathbb{C} P^{n}$?
5A.3. Explain why $\mathbb{C P}^{1}=\mathrm{S}^{2}$.
5B: Now, consider the space $\mathbb{C P}^{3}$, which we have defined using the coordinates above.
5B.1. In one sentence, explain why the following equation is well-defined in $\mathbb{C} P^{3}$:

$$
\begin{equation*}
0=z_{1}^{n}+z_{2}^{n}+z_{3}^{n}+z_{4}^{n} \tag{13}
\end{equation*}
$$

Let Σ denote the subset of $\mathbb{C} P^{3}$ obeying this equation.
5B.2. Suppose that $z_{4} \neq 0$. Define $w_{i}=z_{i} / z_{4}(i=1,2,3)$. Show that

$$
\begin{equation*}
\sum_{i=1}^{3} w_{i}^{n-1} \mathrm{~d} w_{i}=0 \tag{14}
\end{equation*}
$$

5B.3. Consider the following differential form:

$$
\begin{equation*}
\omega=\frac{\mathrm{d} w_{1} \wedge \mathrm{~d} w_{2}}{w_{3}^{n-1}}=\frac{\mathrm{d} w_{2} \wedge \mathrm{~d} w_{3}}{w_{1}^{n-1}}=\frac{\mathrm{d} w_{3} \wedge \mathrm{~d} w_{1}}{w_{2}^{n-1}} \tag{15}
\end{equation*}
$$

Explain why all 3 expressions for ω are equivalent (if $w_{1,2,3} \neq 0$). Conclude that even at points where one (or two) of the $w_{i}=0$, the 2 -form ω is still well-defined and is not singular.
5B.4. Now, consider the subset of Σ where both z_{1} and z_{4} are non-vanishing. We can use either the coordinate chart above, or we can define $v_{i}=z_{i} / z_{1}(i=2,3,4)$. Show how to convert between w_{i} and v_{i} coordinates.
5B.5. Suppose that we try to extend ω from the patch where $z_{4} \neq 0$ to the patch where $z_{1} \neq 0$. When doing so, we need to make sure that as $v_{4} \rightarrow \infty$ in the new patch, we can switch ω to its definition in the old patch, without any singularities. Show that this is only possible if $n=4$.

Continuing this construction gives us a globally defined 2-form ω (defined entirely in terms of holomorphic coordinates z_{i}, not \bar{z}_{i}) which is nowhere zero/singular. This is a sufficient criterion for a K3 surface.

What is impressive about these constructions is that they give us some intuition for how to build up complicated manifolds, with non-trivial differential forms, using only "basic" operations.

[^0]
[^0]: ${ }^{1}$ Hint: The answer is either electric fluxes and/or magnetic fluxes - through what shapes?

