
PHYS 5040: Algebra and Topology in Physics Spring 2021

Homework 9

I Due: 11:59 PM, March 29. Submit electronically on Canvas.

I Prove/show means to provide a mathematically rigorous proof. Argue/describe/explain why
means a non-rigorous (but convincing) argument is acceptable.

Problem 1 (Thermodynamics):20 The “infinitesimal” form of the first law of thermodynamics is sometimes
written as

dE = δQ− δW. (1)

Here dE is the infinitesimal change in the internal energy E under a change in entropy S → S + dS and
volume V → V + dV . The infinitesimal change in the heat absorbed by the system is given by

δQ = TdS, (2)

while the mechanical work done by the system is

δW = PdV. (3)

Here T and P are temperature and pressure, respectively.
Using the language of differential forms, we can interpret dE, δW and δQ as 1-forms on a manifold

characterized by a choice of local coordinates, S and V .

1.1. In thermodynamics, the energy E(S, V ) is a well-defined (single-valued) function of S and V . Hence,
we expect dE is an exact differential. Conclude formulas relating T and P to E, S and V .

1.2. Use the fact that d2E = 0 to obtain a thermodynamic Maxwell relation, relating T and P to each
other.

1.3. Let γ be a closed thermodynamic cycle (a trajectory through the space of state variables, such as S
and V ). The total work done by the system is given by

W =

∫
γ

δW =

∫
γ

PdV. (4)

Generally, W 6= 0. In thermodynamics textbooks, it is often stated that δW and δQ are “inexact
differentials”. Mathematically, what does that imply?

1.4. In the language of differential forms, (1) does not depend on a choice of “coordinates” on the ther-
modynamic manifold. Explain why if we define the free energy

F = E − TS, (5)

the exact differential dF leads us to a new “thermodynamics”, where T and V become a natural
choice of local coordinates. What constraints do we obtain on P and S?
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Problem 2: Consider the manifold M = R× S1.15

2.1. What well known shape is this manifold homeomorphic (topologically equivalent) to?

2.2. As we’ll learn to show later, M is topologically non-trivial. Despite this fact, find a single coordinate
chart that covers all of M .

Problem 3:20 Let ω1 be a q-form and ω2 be an r-form. Show that

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)qω1 ∧ dω2. (6)

Problem 4 (Higher form symmetries): A recent topic of some interest in theoretical physics is the
existence of higher form symmetries.

4A:15 Let’s begin by describing an “ordinary” (continuous) symmetry in the language of differential forms.
Consider a theory with a single conserved charge, where the continuity equation is

∂tρ+ ∂iJi = 0. (7)

4A.1. Define the current 1-form J := ρdt+ Jidxi. Write (7) using differential forms.

4A.2. Consider the dynamics of this conserved charge on spacetime manifold M × R, where M
represents space (xi) and R represents time t. Assuming that charge does not flow in/out at
spatial infinity, use Stokes’ Theorem to show that

d

dt

∫
M

∗J = 0. (8)

What physical quantity does this integral represent?

4A.3. In quantum field theory, the main object of theoretical interest is the following:

Z[A] :=

〈
exp

[∫
A ∧ ∗J

]〉
. (9)

Here the 1-form A represents a classical background gauge field, while J is a quantum operator.
〈· · · 〉 represents a quantum expectation value (which plays no role in this problem). The
integral is performed over the entire spacetime manifold. Argue that if charge is conserved
(namely if (7) holds – do not fuss over J being an operator), then Z[A] must be “gauge
invariant”: if λ is an arbitrary function (0-form),

Z[A] = Z[A+ dλ]. (10)

4B:15 To construct a theory with a higher form symmetry, we can try to reverse the logic above. Suppose
that you have a quantum theory which you can couple to a (p+ 1)-form A, such that (10) holds. We
then say that we have a p-form symmetry.

4B.1. What object must λ be in order for this construction to make sense?

4B.2. If (9) holds, what must the object J be?

4B.3. What is the generalization of the conservation law (7)?

4B.4. Argue that there is an interesting natural generalization of (8), if we replace the integral over
all of space M with an integral over some (possibly) lower dimensional closed surface Σ in M
(namely, a surface Σ with boundary ∂Σ the empty set). What dimension is Σ?
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4C:10 As an interesting example of a higher form symmetry, we turn to ordinary electromagnetism. For
simplicity, you can focus on electromagnetism in 3 + 1 spacetime dimensions.

4C.1. If F represents the Maxwell tensor, show that ∗F is the current of a 1-form symmetry.

4C.2. Physically interpret the conserved quantities associated with this 1-form symmmetry.1

Problem 5 (K3 surfaces): In string theory, a family of 4-dimensional manifolds called K3 surfaces have
wide-ranging importance. In this problem, we will sketch out one construction of a K3 surface.

5A:10 We begin with a discussion of complex projective space CPn, which is defined to be

CPn :=
(
Cn+1 − 0

)
/ ∼ (11)

where
(z1, . . . , zn+1) ∼ λ(z1, . . . , zn+1), (λ 6= 0). (12)

5A.1. Argue that CPn is a manifold which admits an atlas with n+ 1 charts. What are they?

5A.2. What is the dimension of CPn?

5A.3. Explain why CP1 = S2.

5B:15 Now, consider the space CP3, which we have defined using the coordinates above.

5B.1. In one sentence, explain why the following equation is well-defined in CP3:

0 = zn1 + zn2 + zn3 + zn4 . (13)

Let Σ denote the subset of CP3 obeying this equation.

5B.2. Suppose that z4 6= 0. Define wi = zi/z4 (i = 1, 2, 3). Show that

3∑
i=1

wn−1
i dwi = 0. (14)

5B.3. Consider the following differential form:

ω =
dw1 ∧ dw2

wn−1
3

=
dw2 ∧ dw3

wn−1
1

=
dw3 ∧ dw1

wn−1
2

. (15)

Explain why all 3 expressions for ω are equivalent (if w1,2,3 6= 0). Conclude that even at points
where one (or two) of the wi = 0, the 2-form ω is still well-defined and is not singular.

5B.4. Now, consider the subset of Σ where both z1 and z4 are non-vanishing. We can use either the
coordinate chart above, or we can define vi = zi/z1 (i = 2, 3, 4). Show how to convert between
wi and vi coordinates.

5B.5. Suppose that we try to extend ω from the patch where z4 6= 0 to the patch where z1 6= 0.
When doing so, we need to make sure that as v4 →∞ in the new patch, we can switch ω to its
definition in the old patch, without any singularities. Show that this is only possible if n = 4.

Continuing this construction gives us a globally defined 2-form ω (defined entirely in terms of holo-
morphic coordinates zi, not z̄i) which is nowhere zero/singular. This is a sufficient criterion for a K3
surface.

What is impressive about these constructions is that they give us some intuition for how to build up
complicated manifolds, with non-trivial differential forms, using only “basic” operations.

1Hint: The answer is either electric fluxes and/or magnetic fluxes – through what shapes?
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