
PHYS 5210: Graduate Classical Mechanics Fall 2022

Homework 10

Due: October 31 at 11:59 PM. Submit on Canvas.

Problem 1 (Gauge transformations): Consider a Lagrangian L for a charged particle moving in three
spatial dimensions:

L =
1

2
mẋiẋi − Φ+Aiẋi, (1)

where we assume that Φ and Ai do not depend on time t, and set the charge of the particle to be 1.

A:15 Consider the following gauge transformation:

Ai → Ai +
∂λ

∂xi
. (2)

Here λ is an arbitrary function.

A1. Give a short calculation and/or explanation that explains why this gauge transformation cannot
affect the equations of motion, within the context of Lagrangian mechanics.

A2. Now consider the Hamiltonian formulation of this problem (cf Lecture 23). Show that under the
gauge transformation we can alternatively think that Ai was unchanged, while

pi → Pi = pi +
∂λ

∂xi
. (3)

B:20 Independently of electromagnetism, we can always consider a transformation of the phase space coor-
dinates of the form (3). Namely, given a now arbitrary Hamiltonian H(xi, pi), with standard Poisson
bracket [xi, pj ] = δij , we can consider the system in coordinates

Xi = xi, (4a)

P i = pi +
∂λ

∂xi
. (4b)

B1. Show that (4) is a type 2 canonical transformation.

B2. What is the Hamiltonian H(Xi, P i)? Don’t plug in for results from A, and keep H(xi, pi) general.

B3. As the transformation is canonical, it should leave the equations of motion invariant. Show
explicitly that this works: namely, how equations for Ẋi and Ṗ i reduce to those for ẋi and ṗi.

Problem 2 (Rigid body rotation): We revisit the problem of rigid body rotation using the Poisson bracket
formulation of mechanics. An interesting perspective is that the “degrees of freedom” of the problem are
the angular momentum components L1, L2, L3 in the body frame. Their Poisson brackets are (note the
relative sign difference from Lecture 24, because the body frame co-rotates with the object!):

[L1, L2] = −L3, (5a)

[L2, L3] = −L1, (5b)

[L3, L1] = −L2. (5c)
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IThe Hamiltonian for rigid body rotation is

H =
L2
1

2I1
+
L2
2

2I2
+
L2
3

2I3
. (6)

A:20 Use the Poisson bracket “equation of motion” to find first order equations for L̇1, L̇2, L̇3. Show that
your answer agrees with what we found in Lectures 9 and 10.

B:15 We are seemingly able to apply Hamiltonian mechanics to the problem, and yet it also seems that the
dynamics takes place on an odd-dimensional phase space? This cannot be possible – all symplectic
manifolds are even-dimensional, as we discussed in Lecture 25. The resolution to this puzzle is that
the symplectic manifold of interest here is actually the 2-sphere S2!

B1. To see how this is possible, show one of the following Poisson brackets (commutators) vanishes
(the other two calculations are basically identical), using only commutator identities and (5):

0 =
[
L2, L1

]
=

[
L2, L2

]
=

[
L2, L3

]
. (7)

for L2 = L2
1 + L2

2 + L2
3. (Again, note the analogy to the quantum angular momentum algebra!)

B2. In one or two sentences, state why we can restrict the dynamics to a subspace of fixed L2, and
therefore that the phase space for the problem is S2.

B3. To verify that this is indeed a symplectic manifold, we need to find the symplectic form ωIJ as
a 2 × 2 matrix. To do this in some local coordinates, let us fix for simplicity L2 = 1, and then
parameterize

L1 = sin θ cosφ, (8a)

L2 = sin θ sinφ, (8b)

L3 = cos θ. (8c)

Since ω is antisymmetric, the only non-vanishing components will be ωθφ = −ωφθ. Show that if

ωθφ = sin θ, (9)

then the Poisson brackets of the angular momenta agree with (5).1

Remarkably, we have thus found that the 2-sphere S2 is also a symplectic manifold, and a valid phase
space for Hamiltonian mechanics, even though it is compact!

Problem 3 (Hidden symmetry of the harmonic oscillator): Consider the n-dimensional isotropic har-
monic oscillator, whose classical (or quantum) Hamiltonian is given by:

H =
pipi + qiqi

2
. (10)

Here we are using dimensionless units; the index i = 1, . . . , n. Certainly this problem is invariant under
rotations (in n-dimensions), but Hamiltonian mechanics reveals a much larger symmetry group!

As in Lecture 24, collect ps and qs into ξI . We can write

H =
1

2
δIJξ

IξJ , (11)

where δIJ is a 2n× 2n identity matrix.

1Hint: Be careful with raised and lowered IJ indices. What is ωIJ , as defined in Lecture 24? What was the formal
definition of the Poisson bracket?
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A:15 First, we explicitly hunt for some infinitesimal symmetries of this system by clever “inspection”. Let
us focus on symmetries of the form

ξI → ξI + εIJξ
J , (12)

where εIJ is infinitesimally small.

A1. The first property we desire of a symmetry is that it is a coordinate transformation that leaves
H invariant. Explain why this leads to2

εKIδKJ + δIKε
K
J = 0. (13)

A2. We would also like for our infinitesimal symmetries to be canonical transformations. Explain why
this means that

εKIωKJ + ωIKε
K
J = 0. (14)

Here and below, assume the “canonical” choice for ωIJ given at the beginning of Lecture 24.

A3. Show that the most general such transformation is

εIJ =

(
−B −A
A −B

)
(15)

where A is a symmetric n× n matrix and B is an antisymmetric n× n matrix. As in Lecture 24,
the first block row is for qi, and the second for pi. In index notation we can write:

qi → qi −Aijpj −Bijqj , (16a)

pi → pi +Aijqj −Bijpj . (16b)

where Aij = Aji and Bji = −Bij .

B:15 As we saw in Lecture 27, in Hamiltonian mechanics we could also start by finding the conserved
quantities and then deduce the most general symmetry transformations. Now, we proceed with this
perspective.

B1. First, let us obtain a useful mathematical result. Show that[
MIJξ

IξJ , NKLξ
KξL

]
= 2

(
MJIω

IKNKL +MLIω
IKNKJ

)
ξJξL. (17)

Here MIJ = MJI and NKL = NLK are symmetric matrices. Since the matrix in parentheses
above is symmetric, this means that we have a (closed) Lie algebra corresponding to the Poisson
brackets of all quadratic polynomials in ξ!

B2. Show that all quadratics MIJξ
IξJ that have vanishing Poisson bracket with H – which is itself

quadratic: (11) – are of the form

MIJ =
1

2

(
−A B
−B −A

)
. (18)

where A is a symmetric and B is an antisymmetric n × n matrix. Denote any quadratic of the
form (18) as FM for short, moving forward.

B3. Show that FM generates the infinitesimal canonical transformation (16).

2Hint: This is the 2n-dimensional generalization of what we did in Lecture 8.
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B4. Will Poisson brackets [FM1 , FM2 ] form a closed algebra? Namely, will [FM1 , FM2 ] = FM3 for some
other polynomial constrained by (18)?3

C:5 Show that the Lie algebra of Poisson brackets [FM1 , FM2 ] is the same as (isomorphic to) the Lie algebra
u(n), which is the commutator algebra of the generators of n×n unitary matrices. Namely, show how
you can think of M1,2 as generators of unitary transformations on Cn, and relate the Poisson bracket
[FM1 , FM2 ] to a matrix commutator of complex matrices, [M1,M2].

4

This hidden U(n) symmetry of the isotropic oscillator is responsible for the extreme degeneracy of the
quantum mechanical oscillator – it is similar to the origin of the degeneracy of the nonrelativistic hydrogen
atom (cf Homework 9), albeit arising from a different “hidden” symmetry group.

Problem 4 (Parametric resonance): Consider the following Hamiltonian system, corresponding to a
driven oscillator:

H =
p2

2
+ [1 + ε(t)]

q2

2
. (19)

We can think of this as a crude model for a child swinging on a swing set and trying to move their body
in such a way as to begin to swing. In “natural units” the fundamental frequency of the oscillator is 1,
while the child’s motion (which we assume does not change very much the fundamental frequency of the
swing set at any given time) is periodic: ε(t+ τ) = ε(t), with |ε(t)| < 1.

A:10 We focus on the dynamics at times t = 0, τ, 2τ, . . ..

A1. Explain why, given q(0) and p(0), there is a 2× 2 real matrix S such that(
q(τ)
p(τ)

)
= S

(
q(0)
p(0)

)
. (20)

A2. Conclude that det(S) = 1.5

A3. By considering the most general possible form of the eigenvalues of S, conclude that the child’s
motion will lead to an instability (and thus large amplitude of swinging) whenever |tr(S)| > 2.
This phenomenon is called parametric resonance.

B:10 Consider the choice

ε(t) =

{
ε 0 ≤ t < 1

2τ
−ε 1

2τ ≤ t < τ
. (21)

with ε(t + τ) = ε(t) used to define ε for times t ≥ τ . Show that for certain values of τ and ε, the
criterion of A3 is satisfied, and thus there is an instability to large amplitude oscillation. Sketch in
the (τ, ε) plane the location of the instability, and comment on the result. You can take ε� 1.

3Hint: Very little calculation is needed!
4Hint: Recall from quantum mechanics that the generators of a unitary transformation are iT , where T = T †. Then, the

most clever way to see how a complex n× n matrix emerges is to try and package (16) using complex numbers.
5Hint: Time-translation is a canonical transformation. This gives you a constraint on S.
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