Homework 11

Due: November 7 at 11:59 PM. Submit on Canvas.

Problem 1 (WKB approximation): The Hamilton-Jacobi equation is closely related to the semiclassical WKB approximation from quantum mechanics. Consider the Schrödinger equation in d-dimensions:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x_{i} \partial x_{i}}+V\left(x_{i}\right) \Psi=\mathrm{i} \hbar \frac{\partial \Psi}{\partial t}, \tag{1}
\end{equation*}
$$

and consider the ansatz (don't worry that it isn't normalized)

$$
\begin{equation*}
\Psi\left(x_{i}, t\right)=\rho\left(x_{i}, t\right) \mathrm{e}^{\mathrm{i} S\left(x_{i}, t\right) / \hbar} . \tag{2}
\end{equation*}
$$

Plug in (2) into (1). Show that at leading order in the $\hbar \rightarrow 0$ limit, you recover the Hamilton-Jacobi equation for S, for a physically sensible Hamiltonian.

Problem 2 (Meson): A toy model for a meson (elementary particle made up of a quark and anti-quark) is a one-dimensional quantum system with Hamiltonian

$$
\begin{equation*}
H=c|p|+F|x| . \tag{3}
\end{equation*}
$$

In this crude model, you can think of the meson as made up of a stationary quark and an anti-quark, which is effectively massless (and thus has ultrarelativistic kinetic energy). There is a "flux tube" which acts on the anti-quark with a constant tension of strength F that pulls it towards the quark; the Hamiltonian above is the sum of kinetic and potential energies.

A: The phase space for this problem, as written above, is formed by canonical coordinate pair (x, p).
A1. Sketch the surface of constant $H=E$ in phase space. Sketch (without solving any equations) how the system will flow through phase space under Hamiltonian evolution.
A2. Describe the solution to Hamilton's equations and find agreement with your qualitative sketch. While you do not need to write down a solution to the equations for all time, do give an explicit formula for the period T of the oscillations.

B: Now, let us re-solve this problem in action-angle coordinates.
B1. Evaluate the "action" coordinate $J=(2 \pi)^{-1} \oint \mathrm{~d} x p$.
B2. What is the Hamiltonian $H(J)$?
B3. What is the period T of the oscillations? Confirm agreement with A2.
Problem 3 (Parabolic coordinates): Consider the 2d Kepler problem with Lagrangian (in rectangular coordinates)

$$
\begin{equation*}
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{k}{\sqrt{x^{2}+y^{2}}} . \tag{4}
\end{equation*}
$$

C: Now, let us use the Hamilton-Jacobi method.
C1. Write down the Hamilton-Jacobi equation for $S(a, b, t)$.
C2. Plug in the guess $S=W_{a}(a)+W_{b}(b)-E t$, and show that the Hamilton-Jacobi equation can be solved by separation of variables. Solve the equation by determining W_{a} and W_{b} in terms of integrals (which you do not need to explicitly evaluate). Expect to introduce a constant of integration at some point.

Problem 4 (Magnetic lensing): Consider the Hamiltonian (in cylindrical coordinates)

$$
\begin{equation*}
H=\frac{p_{r}^{2}}{2 m}+\frac{\left(p_{\theta}-q r^{2} h(z)\right)^{2}}{2 m r^{2}}+\frac{p_{z}^{2}}{2 m} \tag{7}
\end{equation*}
$$

This Hamiltonian describes the motion of a charged particle of charge q and mass m in a particular kind of magnetic field. This magnetic field leads to "lensing", wherein a source of particles emitted at $(r, z)=\left(0,-z_{1}\right)$, with $z_{1}>0$, can be re-focused at $(r, z)=\left(0, z_{2}\right)$ with $z_{2}>0$.

Assume that the function $h(z)$ vanishes for $|z|>a$. You can also assume that $a \ll z_{1}$.

1. Argue that it is reasonable to neglect θ and p_{θ} coordinates in this problem, given the source of particles of interest.
2. For the remaining r and z coordinates, write down the Hamilton-Jacobi equation for $S=W(r, z)-E t$.
3. Although you cannot solve the resulting equation by separation of variables, you can expand out

$$
\begin{equation*}
W(r, z)=W_{0}(z)+W_{2}(z) r^{2}+\cdots \tag{8}
\end{equation*}
$$

Find the solution for $W_{0}(z)$, and a differential equation for $W_{2}(z)$.
4. Use the fact that $h(z)$ vanishes for $z<-a$ and $z>a$ to deduce the form of $W_{0,2}(z)$ in each region. You can assume for simplicity that the length scale a is very small, while $h^{2} a$ remains finite, if this helps you to simplify the calculation at all.
5. Use continuity at $z= \pm a$ to stitch together the form of $W_{0,2}(z)$ in the entire domain.
6. Use your solution to confirm that the magnetic lens works. Find the value of z_{2} at which the particles are re-focused.

