Homework 12

Due: November 14 at 11:59 PM. Submit on Canvas.

25
Problem 1 (Adiabatic compression of a gas): Consider a molecule in a one-dimensional non-relativistic gas. The molecule has mass m and bounces back and forth between the walls of a container of length L. The length L is assumed to slowly (adiabatically) vary in time. While in this problem we focus on the dynamics of a single molecule, we can use its behavior to estimate what happens for the gas as a whole.

1. Find an adiabatic invariant for this problem as a function of the molecule's energy, E.
2. Deduce, as L changes, how the temperature T of the gas (which is proportional to E), will vary.
3. The pressure P in the gas is proportional to the average force per unit time applied to the left (e.g.) edge of the box, by the molecule bouncing off of it. How will P vary as a function of L ?

Problem 2: Consider the two-dimensional (coupled) harmonic oscillator

$$
\begin{equation*}
H=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+\frac{A}{2}\left(x^{2}+y^{2}\right)+B x y . \tag{1}
\end{equation*}
$$

A: This problem can be exactly solved within Hamiltonian mechanics, as follows.
A1. Show that the following transformation is canonical:

$$
\left(\begin{array}{l}
x_{1} \tag{2}\\
x_{2} \\
p_{1} \\
p_{2}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & -\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
p_{x} \\
p_{y}
\end{array}\right)
$$

A2. What value(s) of θ should you choose in order to simplify the solution of the coupled oscillator problem $?^{1}$ After making this choice, write down $H\left(x_{1}, x_{2}, p_{1}, p_{2}\right)$.

B: Find action-angle variables $\left(J_{1}, J_{2}, \phi_{1}, \phi_{2}\right)$ for this problem, and deduce the Hamiltonian $H\left(J_{1}, J_{2}\right)$. As part of your solution, give an explicit canonical transformation from $\left(x_{1}, x_{2}, p_{1}, p_{2}\right)$ to, or from, the action-angle variables. ${ }^{2}$

C: Let us now interpret our findings in the language of integrable systems, following Lecture 30 .
C1. Explain why H is integrable - i.e., it formally meets the criteria of Lecture 30.
C2. Describe how phase space is written in terms of invariant tori on top of a two-dimensional manifold with coordinates $\left(J_{1}, J_{2}\right)$. A geometric picture may be hard to draw, but communicate how the Liouville-Arnold Theorem is obeyed in this system as best you can.

[^0]C3. For what values of A and B will motion on the invariant tori be commensurate? What about incommensurate?

D: Provide an example of a perturbation to H that is not quadratic in $x_{1,2} / p_{1,2}$, yet maintains integrability with the action-angle variables of B. The perturbation may not be physically reasonable, but be sure in your answer to explain why the problem is nevertheless still exactly solvable.

E: Now, consider perturbing the Hamiltonian to $H^{\prime}=H_{0}+\epsilon H_{1}$, where H_{0} is the Hamiltonian given in (1), and

$$
\begin{equation*}
H_{1}=C\left(x^{4}+y^{4}\right)+D x^{2} y^{2} . \tag{3}
\end{equation*}
$$

E1. Write H_{1} in terms of the action angle variables ($J_{1}, J_{2}, \phi_{1}, \phi_{2}$) found in B.
E2. Follow Lectures 31 and 32. Describe how one can, in principle, look for new action-angle coordinates for the perturbed system. Find H in terms of the new action-angle coordinates, using perturbation theory, to first order in ϵ.

F: Let us now more explicitly carry out the canonical transformation to new action-angle coordinates $\left(J_{1}, J_{2}, \phi_{1}, \phi_{2}\right)$, to first order in ϵ, from the old action-angle coordinates, which we'll now denote as $\left(J_{1,0}, J_{2,0}, \phi_{1,0}, \phi_{2,0}\right)$ First, assume that $B \neq 0$.

F1. Find the type 2 generating function from old to new action-angle variabes, to first order in ϵ.
F2. Can perturbation theory break down at first order in ϵ ?
G: Now, return to the case of $B=0$. In this case, a bit more care is needed to implement perturbation theory, analogous to the case of degenerate perturbation theory in quantum mechanics.

G1. Find action-angle variables ($J_{0}, J_{0}^{\prime}, \phi_{0}, \phi_{0}^{\prime}$) in which the unperturbed Hamiltonian $H_{0} \propto J_{0}{ }^{3}$
G2. Implement a kind of "degenerate" perturbation theory, in which you first find a canonical transform to coordinates $\left(J, J_{0}^{\prime}, \phi, \phi_{0}^{\prime}\right)$, in which H is independent of ϕ to first order in ϵ. Argue that at first order, the problem becomes to a new (somewhat complicated) Hamiltonian system for a single pair of coordinates $\left(J_{0}^{\prime}, \phi_{0}^{\prime}\right)$.

[^1]
[^0]: ${ }^{1}$ Hint: One solves coupled oscillators by writing H as the sum of two independent oscillators $H_{1}+H_{2}$.
 ${ }^{2}$ Hint: Use results from Lecture 31 to help you - almost no new computation necessary.

[^1]: ${ }^{3}$ Note: You can do this without a lot of calculation, but you may need to think carefully about normalization factors to ensure that $\phi_{0} \sim \phi_{0}+2 \pi$ and $\phi_{0}^{\prime} \sim \phi_{0}^{\prime}+2 \pi$ are periodic angle variables.

