Homework 13

Due: December 5 at 11:59 PM. Submit on Canvas.
Problem 1 (Stirred fluid): A fluid is alternately stirred by two thin rods at $x=\sigma(t) a$, where

$$
\sigma(t)=\left\{\begin{array}{ll}
1 & 0 \leq t \leq T, 2 T \leq t \leq 3 T, \ldots \tag{1}\\
-1 & T \leq t \leq 2 T, 3 T \leq t \leq 4 T, \ldots
\end{array} .\right.
$$

The stirring creates a vortex flow pattern, where the local fluid velocity takes the form

$$
\begin{align*}
& v_{x}=\frac{-b y}{y^{2}+(x-a \sigma(t))^{2}} \tag{2a}\\
& v_{y}=\frac{b(x-a \sigma(t))}{y^{2}+(x-a \sigma(t))^{2}} \tag{2b}
\end{align*}
$$

Take $a, b>0$ to be time-independent and constant.

A: It makes sense to consider a tracer particle (such as a drop of dye) moving in this fluid according to the equations

$$
\begin{align*}
& \dot{x}=v_{x}(x, y, t), \tag{3a}\\
& \dot{y}=v_{y}(x, y, t) . \tag{3b}
\end{align*}
$$

Show that these equations actually follow from Hamilton's equations, with

$$
\begin{equation*}
H(x, y, t)=-\frac{b}{2} \log \left((x-a \sigma(t))^{2}+y^{2}\right) \tag{4}
\end{equation*}
$$

and Poisson bracket $[x, y]=1$ (meaning x, y are canonically conjugate). ${ }^{1}$
B: Let's find the solution to these equations. Let $\left(x_{n}, y_{n}\right)=(x(n T), y(n T))$.
B1. Rescale $x_{n} \rightarrow a \tilde{x}_{n}, y_{n} \rightarrow a \tilde{y}_{n}$, and $t \rightarrow T \tilde{t}$. Deduce that there is one interesting dimensionless parameter in the problem:

$$
\begin{equation*}
q=\frac{b T}{a^{2}} . \tag{5}
\end{equation*}
$$

B2. Given initial conditions (x_{0}, y_{0}), explain why for $0 \leq t \leq T$ the particle will move on a circular trajectory. ${ }^{2}$ Determine $\left(x_{1}, y_{1}\right)$.
B3. Let $\sigma_{0,2,4, \ldots}=1$ and $\sigma_{1,3,5, \ldots}=-1$. Continue the logic of B 2 to show that

$$
\begin{align*}
& \tilde{x}_{n+1}=\sigma_{n}+\left(\tilde{x}_{n}-\sigma_{n}\right) \cos \frac{q}{\left(\tilde{x}_{n}-\sigma_{n}\right)^{2}+\tilde{y}_{n}^{2}}-\tilde{y}_{n} \sin \frac{q}{\left(\tilde{x}_{n}-\sigma_{n}\right)^{2}+\tilde{y}_{n}^{2}} \tag{6a}\\
& \tilde{y}_{n+1}=\left(\tilde{x}_{n}-\sigma_{n}\right) \sin \frac{q}{\left(\tilde{x}_{n}-\sigma_{n}\right)^{2}+\tilde{y}_{n}^{2}}+\tilde{y}_{n} \cos \frac{q}{\left(\tilde{x}_{n}-\sigma_{n}\right)^{2}+\tilde{y}_{n}^{2}} \tag{6b}
\end{align*}
$$

[^0]C: Starting, e.g., with the Mathematica notebook for Lecture 35, write a short code to iterate (6) for many steps n, and various initial conditions, drawn from $\left|\tilde{x}_{0}\right|,\left|\tilde{y}_{0}\right| \lesssim 1$. Argue convincingly for a transition from integrability to chaos, with their coexistence at intermediate q.

We see that relatively "predictable" ways of stirring a fluid can lead to rapid (chaotic) mixing!
Problem 2: Let S be the subset of the real line between 0 and 1 , consisting of numbers x whose decimal expansions (in base 10 , as above) contain only even digits: $0,2,4,6,8$. What is the box dimension of S ?

Problem 3 (Decimal shift map): A rare example of a chaotic one-dimensional map which is exactly solvable is the "decimal shift map", defined as follows. Let us define (for $x \in \mathbb{R}$)

$$
\begin{equation*}
\{x\}=x-\lfloor x\rfloor, \tag{7}
\end{equation*}
$$

where $\lfloor x\rfloor$ is the largest integer $\leq x$. More transparently, $\{x\}$ is the "decimal part of x " - for example, $\{3.54\}=0.54$, and in general $0 \leq\{x\}<1$. The decimal shift map (DS) is then

$$
\begin{equation*}
x_{n+1}=\left\{10 x_{n}\right\} . \tag{8}
\end{equation*}
$$

A: Let us begin by looking for fixed points and cycles of DS.
A1. Show that there are 9 fixed points x_{*} obeying $x_{*}=\left\{10 x_{*}\right\}$. What are they?
A2. How many period- 2 cycles are there? What are they?
B: We can define the Lyapunov exponent λ for DS as follows: given two initial conditions x_{0} and x_{0}^{\prime} obeying $\left|x_{0}-x_{0}^{\prime}\right|<\epsilon$, for sufficiently small ϵ, then

$$
\begin{equation*}
\lambda \approx \frac{1}{n} \log \frac{\left|x_{n}-x_{n}^{\prime}\right|}{\left|x_{0}-x_{0}^{\prime}\right|} . \tag{9}
\end{equation*}
$$

In this expression, we think of first taking $\epsilon \rightarrow 0$, and then $n \rightarrow \infty$. Calculate λ analytically for DS.
Problem 4: Consider the logistic map of Lecture 36.
A: Set $r=3.83$. You can use (with suitable edits) the provided Mathematica notebook.
A1. Show that typical initial conditions flow towards a stable period-3 cycle.
A2. Use a numerical linear stability analysis to demonstrate the stability of this period-3 cycle.
B: Let $S \subset[0,1]$ be the subset of initial conditions x_{0}, such that as $n \rightarrow \infty, x_{3 n} \approx 0.504$.
B1. Numerically investigate the geometry of S. Argue that it has very intricate fractal structure, but nevertheless should have box dimension 1 . This is called a "fat fractal".
B2. Numerically determine the box dimension d of ∂S, the boundary of the set S, following Lecture 39, by simply counting the number of "boxes" of a given size containing points in ∂S^{3}. You should find this procedure behaves pretty poorly in practice.

C: There is a more accurate algorithm to efficiently estimate d numerically. Run the logistic map for two initial conditions x_{0} and $x_{0}+\delta$, for various choices of x_{0}. Let $f(\delta)$ denote the fraction of simulations where $x_{3 n}$ is very different for the two simulations. ${ }^{4}$

C1. Argue that $f(\delta) \sim \delta^{1-d}$, and explain why this algorithm is better.
C2. Numerically implement and run this algorithm. Estimate d with error $\lesssim 0.01$.

[^1]
[^0]: ${ }^{1}$ Hint: Recall that $[x, H]=[x, x] \partial_{x} H+[x, y] \partial_{y} H$, etc.
 ${ }^{2}$ Hint: Can you find any conservation laws for $0 \leq t \leq T$? Try to avoid integrating any differential equations directly; instead show that the angular velocity on the circle is a constant.

[^1]: ${ }^{3}$ Note: If set $R=(0.3,0.5] \cup[0.6,0.7]$, then $\partial R=\{0.3,0.5,0.6,0.7\}$.
 ${ }^{4}$ Strictly speaking, to check whether they land in S, we also need to restrict to only the initial conditions where $x_{3 n} \approx 0.504$, but you can ignore this for simplicity now - all 3 "basins" behave similarly.

