
PHYS 5210: Graduate Classical Mechanics Fall 2022

Homework 3

Due: September 12 at 11:59 PM. Submit on Canvas.

Problem 1: In Lecture 6, we described motion of a hanging pendulum (e.g. stuck to a wall) as a physically
realizable system whose configuration space is the circle S1.

A:20 Suppose that we are told that θ = 0 is the unique stable equilibrium for the pendulum. We would like
to write down an effective theory for the pendulum’s motion.

A1. Why we are only allowed to write down cos θ or sin θ (or powers thereof)1 in the Lagrangian?

A2. It is reasonable to assert that within the effective theory for near-equilibrium dynamics, we should
treat each higher power of cos θ or sin θ as a subleading term. Can you think of (one) reason why?

A3. Write down L(θ, θ̇) which contains the lowest order non-trivial terms in both θ and θ̇ which are
allowed to exist on this configuration space, given that θ = 0 is stable.

A4. Compare your answer to the textbook L = T −V – do you find agreement (upon relating constant
coefficients)?

B:10 We could also try to do effective theory on this problem by doing a Taylor expansion near θ = 0,
following Lecture 2.

B1. Show that upon Taylor expanding L from part A you find agreement with the harmonic oscillator
Lagrangian predicted by effective theory in Lecture 2. (You can simply quote the oscillator’s
Lagrangian without derivation.)

B2. Is the L(θ, θ̇) from part A the unique Lagrangian that would have led to agreement with the
harmonic oscillator Lagrangian in the θ → 0 limit? If not, was the effective theory approach from
before incorrect?

B3. Do you think the mathematical configuration space changed after we perform the Taylor expansion
and then restrict to the θ → 0 limit?2

C:10 Mathematicians say that a Lagrangian, depending only on first derivatives, is defined on a space
called the tangent bundle TS1. TS1 can be thought of as a cylinder (S1 × R), where θ ∈ S1 and
θ̇ ∈ R. Mathematicians say that it is impossible for TS1 to be a compact manifold, such as the
two-dimensional torus S1 × S1.

Argue from a physics perspective that this makes sense – we should indeed never think of L(θ, θ̇) as
a map from a compact manifold to R.

When we discuss Hamiltonian mechanics, it will turn out that this formalism does make sense on certain
compact manifolds. We will (almost certainly) even study examples in this class! The inability to naturally
study dynamics on compact phase spaces is a shortcoming in the Lagrangian formulation of mechanics.

1Using trig identities cos(2θ) = cos2 θ − sin2 θ can be related to powers of cos and sin, e.g.
2You can make an argument for either yes or no here. Whichever one you pick, however, make a convincing point. Or

better yet, try to give a perspective for both yes and no.
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Problem 2 (Nematic liquid crystal): A nematic liquid crystal is a phase of matter made out of rod-
shaped molecules. The molecules themselves form a liquid (no translational ordering, as in a solid), yet
the molecules themselves all orient their “rods” in the same direction. Interesting physics in liquid crystals
arises because the manifold of all possible orientations of this rod (even for one liquid crystal molecule)
is non-trivial.

In this problem, our goal is to understand using effective theory the natural kinetic energy describing
the rotation of a single liquid crystal molecule. Mathematically, this amounts to finding the most “natural”
Lagrangian on the manifold corresponding to the space of all possible liquid crystal configurations. This
manifold is called RP2 (two-dimensional real projective space), and corresponds to the set of all lines in
three-dimensional space R3 that pass through the origin: see Figure 1.

A:20 Alice suggests that one way to think about a point p ∈ RP2 is to draw a unit sphere of radius 1
around the origin: x2 + y2 + z2 = 1. Let (θ, φ) denote the angular coordinates of the point where line
p intersects the unit sphere: see Figure 1. Alice suggests that we write a Lagrangian for the liquid
crystal dynamics in terms of (θ, φ).

A1. What is the most sensible Lagrangian Alice should write down?

A2. Is the identification of p with (θ, φ) unique? If not, do you think fixing this “problem” would
change the answer to A1?

B:5 Bob suggests an alternative coordinate system for RP2,
where he considers a point (x, y, 1) along line p where z = 1
(assuming it exists). See Figure 1. Namely, he now consid-
ers the intersection of p with a plane, rather than a sphere.
He then suggests the most natural Lagrangian is

L = A
(
ẋ2 + ẏ2

)
(1)

for some constant A.

While formally speaking this L does describe a reasonable
physical system, explain why it won’t be the correct descrip-
tion of the liquid crystal’s rotational dynamics. Explain in
one or two sentences why Alice’s approach is better.
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Figure 1: A sketch of a point p ∈ RP2 be-
ing a line passing through the origin, along
with Alice, Bob and Dana’s perspectives on
how to find a more tractable “representa-
tion” of p, out of which they can each write
down the Lagrangian L.

C:20 Charlie asserts that Bob’s coordinate system is just as valid as Alice’s, and it must be possible to
describe correctly the dynamics of the liquid crystal using Bob’s coordinate system. What Charlie
explains to Bob is that he should have instead started by building a Lagrangian for a particle moving
in three dimensions: in terms of xi = (x, y, z). Charlie’s strategy is then to demand invariance of
L(xi, ẋi) under three-dimensional rotations and the rescaling symmetry

xi → λ(t)xi. (2)

C1. Why will Charlie’s construction be better than Bob’s?

C2. Use effective theory to argue that the minimal Lagrangian invariant under (2) is

L = A
xixiẋj ẋj − (xiẋi)

2

(xixi)2
. (3)
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C3. Explain why the restriction to z = 1 can be safely done on (3). Deduce the form of the correct
Lagrangian in Bob’s coordinates.

The result of Charlie’s procedure gives us a sort of “geodesic action” (c.f. Homework 2) for non-
relativistic motion on the spatial manifold RP2. The metric we have found for (almost half of) the
two-dimensional sphere (or almost all of RP2) is called the Fubini-Study metric and is well known to
mathematicians (from stereographic coordinates for the sphere).

D:15 Dana suggests also starting with Charlie’s coordinates xi ∈ R3 but then argues to use a Lagrange
multiplier to fix xixi = 1, in order to try to restrict to the configuration space RP2.

D1. Write down Dana’s Lagrangian. How many variables/equations will Dana need to solve?

D2. Show how Dana finds the equation of motion3

ẍi = −ẋj ẋjxi. (4)

Give a physical interpretation for the right hand side, by thinking about the motion of a particle
on a sphere of fixed radius.

Problem 3 (Two-dimensional gravity): A curious feature of two-dimensional gravity (i.e. 1 space, 1 time
dimension) is that the only dynamical degree of freedom is the shape of the boundary of the gravitating
domain. Effectively, therefore, the theory can be analogous to that of a point particle: the action will
depend on the shape of the particle’s worldline, or the boundary of the 2d domain.

However this point particle has a very unusual effective action, which we will construct in this problem,
for the special case where the 2d gravity theory lives on asymptotically anti-de Sitter (AdS) space. In
this limit, the global symmetry of AdS, called SL(2,R), constrains the effective action for the “particle”.

Let T (τ) denote the worldline of the “particle”, with T the coordinate time and τ the proper time.
The global symmetry of AdS turns out to lead us to seek an action which is invariant under the following
family of nonlinear transformations on T :

T (τ)→ aT (τ) + b

cT (τ) + d
. (5)

where a, b, c, d are real numbers.
We would like is to find a set of variables on which the symmetries of AdS act as a linear transformation

– and moreover one where it is easy to write down manifestly invariant terms in an action. It turns out
that the best set of variables to work with involve three coordinates u, v, w constrained to obey

w2 − u2 − v2 = 1. (6)

(We won’t explain yet how T is embedded in these three coordinates, but rather will find out how it
must be embedded via our construction!). Let us write XA = (u, v, w). Contract A indices using a
“Minkowski” convention, where XA

1 XA2 = u1u2 + v1v2 − w1w2. The symmetry SL(2,R) turns out to
be the 2+1-dimensional Lorentz group (relativistic symmetries of boosts and rotations) acting in this
auxiliary 3-dimensional space. Hence, we can write down invariant objects by simply ensuring that we
only contract indices using this relativistic convention.

A:10 Using the principles of effective theory, we will write down a Lagrangian for L(X(τ)). Eventually this
will tell us the effective action for T (τ). The first step is to understand how T (τ) is embedded in these
auxiliary coordinates. Since we have 3 coordinates in XA, but only one variable T , we will need to
find 2 constraints.

3Hint: Take derivatives of xixi = 1 to find further constraints on xi, ẋi, etc.

3



A1. Argue using effective theory principles that the most natural local constraints are

XAXA = −1, (7a)

ẊAẊA =
1

ε2
. (7b)

We already saw the first one in (6), so you need to justify the second one. Here ẊA = dXA/dτ .
You just need to explain why ẊAẊA is a constant (the form will be useful later).

A2. Show that (6) is satisfied by (here Z is a new coordinate)

w =
1 + T 2 + Z2

2Z
, (8a)

v =
1− T 2 − Z2

2Z
, (8b)

u =
T

Z
. (8c)

A3. Show that (7b) is satisfied by

1

ε2
=
Ṫ 2 + Ż2

Z2
. (9)

Remarkably, this equation reveals (to the initiated eye) how two-dimensional gravity has arisen!
The right hand side of this equation is the equation describing the (imaginary time) length
(squared) of a worldline in AdS space (c.f. geodesics on Homework 2). We can therefore interpret
this constraint as the requirement that locally the boundary of the two-dimensional gravity theory
maintains a fixed length per unit of proper time.

A4. The theory of interest will look nicest in the limit ε→ 0. Explain why in this limit, a consistent
solution to (9) is

Z = εṪ + O
(
ε3
)
. (10)

In what follows, neglect all subleading corrections.

B:10 Now, we are ready to build the effective action for T (τ).

B1. The action for two-dimensional gravity will take the form

S =

∫
dτ

[
λ1
(
XAXA + 1

)
+ λ2

(
ẊAẊA −

1

ε2

)
+ Lphys(X, Ẋ, Ẍ, . . .)

]
, (11)

where λ1,2 are Lagrange multipliers. Use effective theory to find the term(s) in Lphys with as few
derivatives as possible.

B2. Plug in (8) and (10) into Lphys. (You may want to use Mathematica for the symbolic manipulations
here.) Show that for some constant A,

S[T (τ)] = −A
∫

du

[ ...
T

Ṫ
− 3

2

T̈ 2

Ṫ 2

]
. (12)

(12) is called the Schwarzian action. You could check (but it is not required) that this action is
indeed invariant under (5). The point of this problem is that effective theory guarantees for us that
this action is invariant under the highly non-trivial symmetries we needed. The quantization of this
theory was a very active problem in string theory, about 5 years ago.

4


