
PHYS 5210: Graduate Classical Mechanics Fall 2022

Homework 5

Due: September 26 at 11:59 PM. Submit on Canvas.

Problem 1 (Wobbly Earth): The Earth is not a perfect sphere, nor is its mass fully isotropically dis-
tributed. As such, we can approximate Earth to be a rigid body which is symmetric about one axis:
I1 = I2, and with

I3

I1
− 1 ∼ 3× 10−3. (1)

The axis the Earth rotates around most quickly is I3: ω3 ≈ 1/(1 day).

A:15 Let us begin by discussing Euler’s equations for a body of this kind.

A1. Use (your) solutions to Homework 4 to state (without derivation) the most general kind of motion
for a rigid body with I1 = I2.

A2. Plug in for the actual numbers associated with Earth, and describe the frequency of Earth’s
wobbling around the 3-axis in its body frame.

B:5 For the rest of this problem, we will consider a more non-trivial source of Earth’s wobble, due to its
gravitational interactions with the Sun. A microscopic calculation of the effect requires analyzing the
gravitational potential energy of a non-spherical body, and one finds

L =
I1

2

(
θ̇2 + sin2 θφ̇2

)
+
I3

2

(
ψ̇ + φ̇ cos θ

)2
+

3

2
(I3 − I1)ω2

0 cos2 θ (2)

where ω0 ≈ 1/(1 year) is the orbital period of the Earth.

While fixing the exact prefactor of the last term above requires a microscopic calculation, explain why
the function cos2 θ that shows up in L is the minimal one which is consistent with either symmetries
or physical principles relevant for the problem.

C:10 Suppose that the system is on a physical trajectory such that θ = θ0 is independent of time.

C1. Evaluate the Euler-Lagrange equations for L given in (2), and find an equation that constrains
the value of θ.

C2. Following Lecture 11, use the conserved quantity pψ = I3ω3 to simplify your result from before
to an equation relating θ and φ̇.

C3. By using the physical values of ω0, ω3 and I3/I1, argue that the consistent solution to this equation
has φ̇ very small. Estimate it, and thus the period of Earth’s precession due to gravitational
interactions with the Sun. Compare with the period from part A.

D:10 Follow our analysis of the spinning top in Lecture 11, and show that we can analyze the motion
of Earth’s wobble by mapping on to an auxiliary one-dimensional dynamical system, for a particle
constrained to −1 ≤ z ≤ 1, with zero energy, and potential (per mass)

Veff(z) = −
(
1− z2

) (
a+ bz2

)
+ (c− dz)2 . (3)

Give expressions for the constants a, b, c, d in terms of I1, I3, ω0, ω3.
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E:15 Now consider more general a, b, c, d. You should ensure that at least in principle the values are physical
(e.g. you do not set a parameter that must be positive to in fact be negative!); you can also assume
that I3 > I1, as it is for Earth.

Qualitatively deduce all possible motions of a wobbly planet, by sketching all possible shapes for
Veff(z) (focusing on the number of zeros and where Veff is positive vs. negative).

Problem 2 (A “complex” solid): Consider this microscopic Lagrangian for a one-dimensional solid:

L =

∞∑
n=−∞

[
1

2
mż2

n −
1

2
Kn(zn − zn+1)2

]
, (4)

where

Kn =

{
A n even
B n odd

. (5)

A:25 Let us begin by exactly solving the problem (finding all of the normal modes).

A1. Look for normal mode solutions of the form(
x2j

x2j+1

)
=

(
a
beiθ

)
e2iθj−iωt. (6)

Show that calculating the allowed values of ω2 reduces to finding the eigenvalues of a 2×2 matrix
that depends on θ (and which you should write explicitly). (In this part, please don’t ever convert
to X, x or k as we did at the end of Lecture 12.)

A2. Find the eigenvalues of this matrix, and thus deduce ω1(θ) and ω2(θ) correspond to two different
solutions of the problem, or two different “branches” of dispersion for the vibrational modes.

A3. What are the independent values of θ, corresponding to distinct normal modes?

A4. Suppose A > B > 0, and take |θ| � 1. Sketch the motion of the atoms on even/odd sites in
each of the two types of vibrational normal modes found above. The lower frequency one is called
“acoustic”, while the higher frequency one is called “optical”. This jargon is entirely historical.

A5. Explain what happens if A = B.

B:10 For each of the two types of vibrational modes found above, qualitatively give the form of the effective
(long wavelength) Lagrangian field theory that describes the displacements X(x, t). You do not need
to go through as detailed of a derivation as Lectures 12 or 13 – if you can write down the qualitative
form of L and justify it, that is enough for full credit.

C:10 Now suppose we looked at an extremely generic one-dimensional solid, where the Kn > 0 in (4) are
arbitrary. This could model e.g. an amorphous solid like glass. I claim that despite being unable to
find exact normal modes based on plane waves, we still know that there is an “acoustic” vibrational
mode, which one can find with arbitrarily low frequency ω. Why?1

1Hint: First find a mode which always has ω = 0.
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Problem 3 (Rotational-vibrational coupling): In d spatial dimensions, suppose that the motion for a
weakly deformable “almost rigid body” can be described as follows. The configuration space consists of
d-dimensional orthogonal matrices R with det(R) = 1 (we write R ∈ SO(d)), together with a single degree
of freedom χ which corresponds to the “stretching” of the body.

A:10 Using the notation of Lecture 9, the Lagrangian for this almost rigid body is given by

L = T (χ, χ̇, Ṙ)− V (χ) + Λij (RkiRkj − δij) , (7)

where T is the kinetic energy given by

T =

∫
ddx′ ρ(x′)v2, (8)

where v2 denotes the velocity squared, as in Lecture 9. Unlike in Lecture 9, we now propose that the
relation between “body frame” coordinates x and fixed “space frame” coordinates x′ is given by

x′i(x, t) = χ(t)Rij(t)xj . (9)

χ(t) corresponds to a uniform compression/expansion of the body.

A1. Follow the derivation in Lecture 9, but accounting for χ(t) – and, to the extent it is important,
the generality of space dimension d – to find an expression for T (χ, χ̇, Ṙ).

A2. Conclude that the rotational R and expansion χ motion are approximately decoupled for small
amplitude dynamics (e.g. Rjk = δjk + ∆Rjk and χ ≈ 1 + ∆χ, with ∆-terms treated as small
perturbations).

B:10 Restrict to d = 2 spatial dimensions. The most general orthogonal matrix in SO(2) takes the form

R(t) =

(
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)
. (10)

B1. Deduce that the configuration space for two-dimensional rotation, called SO(2), is equivalent to
S1.

B2. Find an expression for L(θ, θ̇, χ, χ̇). Do not yet restrict to the χ ≈ 1 limit.

B3. Explain why even when θ̇ 6= 0, the dynamics for χ can be reduced to an effectively one-dimensional
problem in Lagrangian mechanics.

C:5 Continue with d = 2. Now suppose that

V (χ) =
U

2
(χ− 1)2 (11)

where U is an extremely large energy scale; namely you can treat 1/U as a small parameter. This
means that the body’s vibrations are highly energetic and the body is nearly rigid.

For a generic rotating nearly-rigid body, would we expect the rotational dynamics to increase or
decrease the vibrational frequency?

You might expect the answer to this problem to have relevance for molecular spectroscopy. But, the
equivalence between energy and frequency of emitted light in quantum mechanics is important – the shift
in ground state energy for the vibrational mode ends up effectively “changing the sign” of the effect above.
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