
PHYS 5210: Graduate Classical Mechanics Fall 2022

Homework 6

Due: October 3 at 11:59 PM. Submit on Canvas.

Problem 1 (Magnetism and spontaneous symmetry breaking): In this problem, we will develop an
effective field theory for the magnetization transition in statistical physics. Suppose that we have a
material in d = 3 spatial dimensions (spatial coordinates denoted with xi, i = 1, 2, 3), and at each
point in some microscopic lattice we have an 3-component spin sα (α = 1, 2, 3). Indices αβ · · · will
denote spin/magnetization components, while ij · · · denote spatial indices. The continuum coarse-grained
magnetization density is defined to be a smooth function with the property that∫

region R

d3x Mα(x) ≈
∑

lattice sites v in region R

sα(v). (1)

Unlike in Lecture 12, we will not explicitly derive the continuum Lagrangian description for Mα(x),
but will instead postulate it from physical principles. There are, a priori, two types of rotations in this
problem: rotations of the spatial coordinates xi, and rotations of the magnetization Mα. We demand
invariance of L under orthogonal transformations Mα → RαβMβ of the spins, and under orthogonal
transformations xi → Qijxj of the spatial coordinates. Here R and Q both belong to O(3), but the
rotations act on different objects so we will keep them distinct.

A:20 The most general Lagrangian density with at most two derivatives is

L = A (MαMα) ∂tM
β∂tM

β −B (MαMα) ∂iM
β∂iM

β − C (MαMα) , (2)

where the (smooth) functions A, B, C are otherwise general.

A1. Explain why the only zero-derivative term that can be written down is C.

A2. Explain why no first derivative terms, either with ∂t or ∂i, should be written down.

A3. For the rest of the problem, we will assume that A and B are constants (not functions), while

C
(
M2
)

= fM2 + g
(
M2
)2
, (3)

with f, g constant as well. Argue that this Lagrangian will (after appropriately rescaling coordi-
nates) have relativistic invariance under space/time Lorentz transformations. Henceforth combine
(∂t, ∂i) = ∂µ.

Emergent relativistic invariance is common in field theory, for the symmetry reasons you have found
above. For the remainder of the problem, work with

L = −A∂µMα∂µMα − fMαMα − g (MαMα)2 . (4)

(Note that we are raising/lowering the spacetime µν · · · indices carefully, while the αβ indices denoting
magnetization will always be raised.)
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B:15 Assume that A, f, g > 0, until stated otherwise.

B1. Find the Euler-Lagrange equations for Mα.

B2. Show that Mα = 0 (for each component) is a solution to these equations.

B3. Now treat Mα as perturbatively (infinitesmally) small. Show that each component of Mα (ap-
proximately) obeys an independent Klein-Gordon-like (massive, relativistic) equation.

B4. In the limit where Mα is small, what is the approximate form of L? Is your answer consistent
with B3?

C:15 (4) has a number of continuous symmetries. Let us start with the SO(3) invariance under rotation of

the magnetization: Mα → RαβMβ.

C1. What are the infinitesimal transformations that generate this symmetry?1

C2. Use Noether’s Theorem to deduce conserved currents associated with this symmetry.

C3. Check that these currents are conserved (“∂µJ
µ = 0”) on solutions to the equations of motion.

D:10 (4) is also invariant under relativistic translations: xµ → xµ + εµ. Find the resulting stress-energy
tensor Tµν for this theory.

E:15 (4) is also invariant under relativistic Lorentz transformations: xµ → Λµνxν .

E1. What is the infinitesimal form of the global transformation above?

E2. Find the resulting conserved current(s) due to Noether’s Theorem.

E3. Argue that the conservation of these currents imposes that (up to derivative corrections) Tµν =
T νµ – namely, the stress-energy tensor should be symmetric. Confirm this is the case.

F:15 Now, let us consider f < 0.

F1. Show that the static and stable solutions to the Euler-Lagrange equations obey

Mα = nα

√
|f |
g

(5)

where nα is a t, x-independent unit vector (nαnα = 1).

F2. Consider fluctuations around this value of Mα, choosing nα = (0, 0, 1):

Mα =

(
ζ1(t, x), ζ2(t, x),

√
|f |
g

+ ζ3(t, x)

)
. (6)

Plug in this ansatz for Mα into L, and keep only terms that are at most quadratic order in the
fluctuations ζα.

F3. You should have found that two of the ζαs obey a massless Klein-Gordon equation at quadratic
order. Can you think of a reason why?

When f < 0, we say that this theory has spontaneous symmetry breaking – although L is invariant
under SO(3), the equilibrium state (5) is only invariant under rotations along the nα-axis (called
SO(2)). The existence of massless modes when a continuous symmetry is spontaneously broken is
called Goldstone’s Theorem. In magnetic systems, when f > 0 we have a paramagnetic (unordered)
phase; when f < 0, we have a ferromagnetic (ordered) phase, as arises in iron, where the material
can spontaneously maintain a magnetic moment.

1Hint: If stuck, look again at Lectures 5, 8, and/or (solutions to) Problem 3 on Homework 4.
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G:15 Lastly, let us try to come up with a fully nonlinear effective field theory for the spontaneous symmetry
broken phase. The insight is that in (5), it would be more natural to write down an action involving
nα(xµ), rather than Mα. As nα is a unit vector in three-dimensional space, we can think of it as
stating that the configuration space for our effective field theory is S2, the sphere. Previously in class
and on homework, we have described how to write down effective theories for dynamics on S2.

G1. Predict using effective field theory the simplest possible, lowest derivative, non-trivial L describing
the dynamics of the field nα(xµ). There are multiple plausible ways you could proceed, based on
what we have done before.

G2. Plug in the ansatz (5), but with nα(xµ) a spacetime-dependent object, into (4). Do you find
agreement with your answer to G1?

Problem 2 (String theory):15 In this problem we will discuss the classical Polyakov action which describes
the motion of relativistic strings in string theory. The action describes how a string, parameterized by
worldsheet coordinates (σ, τ) = σa, moves through the physical spacetime coordinates Xµ. µν · · · indices
are raised and lowered with ηµν . So the fields describing the motion of a string are Xµ(σa). At the
classical level, the non-trivial action one can write down is

S = A

∫
dτdσ

√
−det(γ)γab∂aXµ∂bX

µ (7)

Here γab is a 2× 2 matrix field with no derivatives in the action, while γab denotes the inverse of matrix
γab – we will see that it behaves a bit like a Lagrange multiplier, albeit in a less-than-obvious way. det(γ)
denotes the determinant of the 2× 2 matrix γ. A is a proportionality constant.

In this problem, we will study the motion of a closed string, where σ is a “periodic” coordinate in
which σ = 0 is identified with σ = L; hence L is the (coordinate) length of the string.

To actually understand the equations of motion for the relativistic string, it will help to “gauge fix”
the action, much like setting θ = t in our covariant relativistic action for a particle (c.f. Lecture 3). Of
course, for the string, this process is rather more involved.

1. Show that S is invariant under the re-scaling γab → γabC(σ, τ) for any C.

2. Show that S is invariant under arbitrary (invertible) reparameterizations: τ → f(τ, σ) , σ → g(τ, σ).
In order to make this work, you will also need to transform γab under reparameterization.

3. One can show (but you don’t need to) that these symmetries can be used to fix

T +X1

√
2

= τ, (8a)

∂σγσσ = 0, (8b)

det(γ) = −1. (8c)

where X1 denotes the first spatial coordinate, while T denotes the time coordinate (sometimes denoted
X0). Conclude that we can write the action in terms of γσσ and γστ as

S = A

∫
dτdσ

[
γσσ(τ)

(
2∂τX

− − ∂τXi∂τX
i
)
− 2γστ

(
∂σX

− − ∂τXi∂σX
i
)

+

(
1− γ2στ

)
∂σXi∂σX

i

γσσ

]
(9)

where Xi denotes the transverse spacetime coordinates except for Tand X1, and

X− =
T −X1

√
2

. (10)
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4. Use an equation of motion, along with any other useful properties stated above, to deduce that γ must
be a constant matrix. You can then further impose γστ = 0.

5. At last, deduce the most general possible solution to the equations of motion of the action. Explain
physically the allowed motions of the relativistic string.
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