Homework 6

Due: October 3 at 11:59 PM. Submit on Canvas.

Problem 1 (Magnetism and spontaneous symmetry breaking): In this problem, we will develop an effective field theory for the magnetization transition in statistical physics. Suppose that we have a material in $d=3$ spatial dimensions (spatial coordinates denoted with $x_{i}, i=1,2,3$), and at each point in some microscopic lattice we have an 3 -component $\operatorname{spin} s^{\alpha}(\alpha=1,2,3)$. Indices $\alpha \beta \cdots$ will denote spin/magnetization components, while $i j \cdots$ denote spatial indices. The continuum coarse-grained magnetization density is defined to be a smooth function with the property that

$$
\begin{equation*}
\int_{\text {region } R} \mathrm{~d}^{3} x M^{\alpha}(x) \approx \sum_{\text {lattice sites } v \text { in region } R} s^{\alpha}(v) . \tag{1}
\end{equation*}
$$

Unlike in Lecture 12, we will not explicitly derive the continuum Lagrangian description for $M^{\alpha}(x)$, but will instead postulate it from physical principles. There are, a priori, two types of rotations in this problem: rotations of the spatial coordinates x_{i}, and rotations of the magnetization M^{α}. We demand invariance of \mathcal{L} under orthogonal transformations $M^{\alpha} \rightarrow R^{\alpha \beta} M^{\beta}$ of the spins, and under orthogonal transformations $x_{i} \rightarrow Q_{i j} x_{j}$ of the spatial coordinates. Here R and Q both belong to $\mathrm{O}(3)$, but the rotations act on different objects so we will keep them distinct.

A: The most general Lagrangian density with at most two derivatives is

$$
\begin{equation*}
\mathcal{L}=A\left(M^{\alpha} M^{\alpha}\right) \partial_{t} M^{\beta} \partial_{t} M^{\beta}-B\left(M^{\alpha} M^{\alpha}\right) \partial_{i} M^{\beta} \partial_{i} M^{\beta}-C\left(M^{\alpha} M^{\alpha}\right), \tag{2}
\end{equation*}
$$

where the (smooth) functions A, B, C are otherwise general.
A1. Explain why the only zero-derivative term that can be written down is C.
A2. Explain why no first derivative terms, either with ∂_{t} or ∂_{i}, should be written down.
A3. For the rest of the problem, we will assume that A and B are constants (not functions), while

$$
\begin{equation*}
C\left(M^{2}\right)=f M^{2}+g\left(M^{2}\right)^{2} \tag{3}
\end{equation*}
$$

with f, g constant as well. Argue that this Lagrangian will (after appropriately rescaling coordinates) have relativistic invariance under space/time Lorentz transformations. Henceforth combine $\left(\partial_{t}, \partial_{i}\right)=\partial_{\mu}$.

Emergent relativistic invariance is common in field theory, for the symmetry reasons you have found above. For the remainder of the problem, work with

$$
\begin{equation*}
\mathcal{L}=-A \partial_{\mu} M^{\alpha} \partial^{\mu} M^{\alpha}-f M^{\alpha} M^{\alpha}-g\left(M^{\alpha} M^{\alpha}\right)^{2} . \tag{4}
\end{equation*}
$$

(Note that we are raising/lowering the spacetime $\mu \nu \cdots$ indices carefully, while the $\alpha \beta$ indices denoting magnetization will always be raised.)

B: Assume that $A, f, g>0$, until stated otherwise.
B1. Find the Euler-Lagrange equations for M^{α}.
B2. Show that $M^{\alpha}=0$ (for each component) is a solution to these equations.
B3. Now treat M^{α} as perturbatively (infinitesmally) small. Show that each component of M^{α} (approximately) obeys an independent Klein-Gordon-like (massive, relativistic) equation.
B4. In the limit where M^{α} is small, what is the approximate form of \mathcal{L} ? Is your answer consistent with B3?
the magnetization: $M^{\alpha} \rightarrow R^{\alpha \beta} M^{\beta}$.
C1. What are the infinitesimal transformations that generate this symmetry? ${ }^{1}$
C2. Use Noether's Theorem to deduce conserved currents associated with this symmetry.
C3. Check that these currents are conserved (" $\partial_{\mu} J^{\mu}=0$ ") on solutions to the equations of motion.
D: (4) is also invariant under relativistic translations: $x^{\mu} \rightarrow x^{\mu}+\epsilon^{\mu}$. Find the resulting stress-energy tensor $T^{\mu \nu}$ for this theory.

E: (4) is also invariant under relativistic Lorentz transformations: $x^{\mu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}$.
E1. What is the infinitesimal form of the global transformation above?
E2. Find the resulting conserved current(s) due to Noether's Theorem.
E3. Argue that the conservation of these currents imposes that (up to derivative corrections) $T^{\mu \nu}=$ $T^{\nu \mu}$ - namely, the stress-energy tensor should be symmetric. Confirm this is the case.

F: Now, let us consider $f<0$.
F1. Show that the static and stable solutions to the Euler-Lagrange equations obey

$$
\begin{equation*}
M^{\alpha}=n^{\alpha} \sqrt{\frac{|f|}{g}} \tag{5}
\end{equation*}
$$

where n^{α} is a t, x-independent unit vector $\left(n^{\alpha} n^{\alpha}=1\right)$.
F2. Consider fluctuations around this value of M^{α}, choosing $n^{\alpha}=(0,0,1)$:

$$
\begin{equation*}
M^{\alpha}=\left(\zeta^{1}(t, x), \zeta^{2}(t, x), \sqrt{\frac{|f|}{g}}+\zeta^{3}(t, x)\right) \tag{6}
\end{equation*}
$$

Plug in this ansatz for M^{α} into \mathcal{L}, and keep only terms that are at most quadratic order in the fluctuations ζ^{α}.
F3. You should have found that two of the ζ^{α} S obey a massless Klein-Gordon equation at quadratic order. Can you think of a reason why?

When $f<0$, we say that this theory has spontaneous symmetry breaking - although \mathcal{L} is invariant under $\mathrm{SO}(3)$, the equilibrium state (5) is only invariant under rotations along the n^{α}-axis (called $\mathrm{SO}(2)$). The existence of massless modes when a continuous symmetry is spontaneously broken is called Goldstone's Theorem. In magnetic systems, when $f>0$ we have a paramagnetic (unordered) phase; when $f<0$, we have a ferromagnetic (ordered) phase, as arises in iron, where the material can spontaneously maintain a magnetic moment.

[^0]G: Lastly, let us try to come up with a fully nonlinear effective field theory for the spontaneous symmetry broken phase. The insight is that in (5), it would be more natural to write down an action involving $n^{\alpha}\left(x^{\mu}\right)$, rather than M^{α}. As n^{α} is a unit vector in three-dimensional space, we can think of it as stating that the configuration space for our effective field theory is S^{2}, the sphere. Previously in class and on homework, we have described how to write down effective theories for dynamics on S^{2}.

G1. Predict using effective field theory the simplest possible, lowest derivative, non-trivial \mathcal{L} describing the dynamics of the field $n^{\alpha}\left(x^{\mu}\right)$. There are multiple plausible ways you could proceed, based on what we have done before.
G2. Plug in the ansatz (5), but with $n^{\alpha}\left(x^{\mu}\right)$ a spacetime-dependent object, into (4). Do you find agreement with your answer to G1?

Problem 2 (String theory): In this problem we will discuss the classical Polyakov action which describes the motion of relativistic strings in string theory. The action describes how a string, parameterized by worldsheet coordinates $(\sigma, \tau)=\sigma^{a}$, moves through the physical spacetime coordinates $X^{\mu} . \mu \nu \cdots$ indices are raised and lowered with $\eta_{\mu \nu}$. So the fields describing the motion of a string are $X^{\mu}\left(\sigma^{a}\right)$. At the classical level, the non-trivial action one can write down is

$$
\begin{equation*}
S=A \int \mathrm{~d} \tau \mathrm{~d} \sigma \sqrt{-\operatorname{det}(\gamma)} \gamma^{a b} \partial_{a} X_{\mu} \partial_{b} X^{\mu} \tag{7}
\end{equation*}
$$

Here $\gamma_{a b}$ is a 2×2 matrix field with no derivatives in the action, while $\gamma^{a b}$ denotes the inverse of matrix $\gamma_{a b}$ - we will see that it behaves a bit like a Lagrange multiplier, albeit in a less-than-obvious way. $\operatorname{det}(\gamma)$ denotes the determinant of the 2×2 matrix $\gamma . A$ is a proportionality constant.

In this problem, we will study the motion of a closed string, where σ is a "periodic" coordinate in which $\sigma=0$ is identified with $\sigma=L$; hence L is the (coordinate) length of the string.

To actually understand the equations of motion for the relativistic string, it will help to "gauge fix" the action, much like setting $\theta=t$ in our covariant relativistic action for a particle (c.f. Lecture 3). Of course, for the string, this process is rather more involved.

1. Show that S is invariant under the re-scaling $\gamma_{a b} \rightarrow \gamma_{a b} C(\sigma, \tau)$ for any C.
2. Show that S is invariant under arbitrary (invertible) reparameterizations: $\tau \rightarrow f(\tau, \sigma), \sigma \rightarrow g(\tau, \sigma)$. In order to make this work, you will also need to transform $\gamma_{a b}$ under reparameterization.
3. One can show (but you don't need to) that these symmetries can be used to fix

$$
\begin{align*}
\frac{T+X^{1}}{\sqrt{2}} & =\tau \tag{8a}\\
\partial_{\sigma} \gamma_{\sigma \sigma} & =0 \tag{8b}\\
\operatorname{det}(\gamma) & =-1 \tag{8c}
\end{align*}
$$

where X^{1} denotes the first spatial coordinate, while T denotes the time coordinate (sometimes denoted $\left.X^{0}\right)$. Conclude that we can write the action in terms of $\gamma_{\sigma \sigma}$ and $\gamma_{\sigma \tau}$ as

$$
\begin{equation*}
S=A \int \mathrm{~d} \tau \mathrm{~d} \sigma\left[\gamma_{\sigma \sigma}(\tau)\left(2 \partial_{\tau} X^{-}-\partial_{\tau} X_{i} \partial_{\tau} X^{i}\right)-2 \gamma_{\sigma \tau}\left(\partial_{\sigma} X^{-}-\partial_{\tau} X_{i} \partial_{\sigma} X^{i}\right)+\frac{\left(1-\gamma_{\sigma \tau}^{2}\right) \partial_{\sigma} X_{i} \partial_{\sigma} X^{i}}{\gamma_{\sigma \sigma}}\right] \tag{9}
\end{equation*}
$$

where X_{i} denotes the transverse spacetime coordinates except for T and X^{1}, and

$$
\begin{equation*}
X^{-}=\frac{T-X^{1}}{\sqrt{2}} \tag{10}
\end{equation*}
$$

4. Use an equation of motion, along with any other useful properties stated above, to deduce that γ must be a constant matrix. You can then further impose $\gamma_{\sigma \tau}=0$.
5. At last, deduce the most general possible solution to the equations of motion of the action. Explain physically the allowed motions of the relativistic string.

[^0]: ${ }^{1}$ Hint: If stuck, look again at Lectures 5, 8, and/or (solutions to) Problem 3 on Homework 4.

