PHYS 5210 Graduate Classical Mechanics Fall 2022

Lecture 27

Noether's Theorem on symplectic manifolds

October 24

1 Prove Noether's Theorem in Hamiltonian mechanics.
Continuous symmetry
$$\rightarrow$$
 conservation law, Assume $\frac{2f}{2t} = 0$.
2? in Hamiltonian! $f = 0 = [f, H]$
Continuous family of CTs
lave H invariant.
Suppose $\frac{H(S^{T}(s)) = H(S^{T})}{ds} = [S^{T}(s), g]$
Suppose $\frac{H(S^{T}(s)) = H(S^{T})}{ds} = [G^{T}(s), g]$
Suppose $\frac{H(S^{T}(s)) = H(S^{T})}{ds} = [H, g] = 0$
Evolution in S generated by g. So
 $\frac{dH}{ds} = \frac{2H}{2S^{T}} \frac{dS^{T}}{ds} = [H, g] = 0$
Evolution in S $S^{T}(s)$ is C.T.
Converse : if $[H, g] = 0$, then there's CTs $S^{T} \rightarrow S^{T}(s)$
w) $\frac{dS^{T}(s)}{ds} = [S^{T}(s), g] \Rightarrow continuous symmetry$

2 Show that conserved quantities generate a Lie algebra.
Clain: if fig are conserved , so is [fig].
if
$$[f, H] = 0 = [H, f]$$

Proof: [Jacobi identity]: $\frac{d}{dt} [f, g] = [[f, g], H]$
 $= -[[g, H], f] - [[H, f], g] = 0$
continuous symmetries form Lie algebra: $f, g \in alg$ means $[f, g] \in alg$.
Ex: angular momentum (Li): $[H, L_i] = 0$
 $[L_i, L_j] = \varepsilon_{ijk}L_k$
If L_x/Ly are conserved, so is L_z :
Algebraic structure
ensures continuous symmetry group.
 $SI = SYm SI' = SI''$

3 What are the implications of momentum conservation?
2 particles in Id:

$$p_{tot} = p_1 + p_2$$
 is conserved.
 $p_{tot} = p_1 + p_2$ is conserved.
 $p_1 = p_1 + p_2 + p_2 + V(x_1 - x_2)$
 $p_1 = p_1 + p_2 + V(x_1 - x_2)$
 $p_1 = p_1 + p_2 + V(x_1 - x_2)$
 $p_1 = p_1 + p_2 + V(x_1 - x_2)$
 $p_1 = p_1 + p_2 + V(x_1 - x_2)$
 $p_1 = p_1 + p_2 + V(x_1 - x_2)$
 $p_1 = p_1 + p_2 + V(x_1 - x_2)$
 $p_1 = p_1 + p_2 + V(x_1 - x_2)$
 $p_2 = p_1 + p_2$ is present the implication is symmetry:
 $p_2 = p_1 + p_2$ is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be a continuous symmetry in the implication is present to be

4 Explain how a conserved quantity removes two degrees of freedom from phase space.

If you have conserved ptot ... remove pair of phase space counds. $\& COM: X_1 + X_2 (m_1 = m_2)$ Ignorable DOF = $P_1 + P_2$ d ptot = assume! AND: $\frac{dx_{con}}{dt} = \frac{P_{tot}}{2m} = const.$ dt phase space Know H can't depend on X com: [xcom, Ptol 70. (xcom > xcom + s) Use $\frac{dS^{T}}{dS} = [S^{T}, p_{t+1}]$ 2n-2 dim Subspace. Samo Take points 2 5^I(s) for any s}, exe identify them to gether F81 Mathematics: 2n-2-din subspace will be symplectic P tot fixed to B to (0)