
PHYS 5210: Graduate Classical Mechanics Fall 2022

Practice Exam

Problem 1 (Particle in a rotating frame): In this problem, we will study the Lagrangian and Hamiltonian
mechanics of a non-relativistic point particle in three dimensions, moving in a rotating coordinate frame.
A helpful way to do this is to say that xi(t) = (x1(t), x2(t), x3(t)) represents the particle’s position in a
non-rotating (inertial) frame, while zi(t) represents position in the rotating frame. These coordinates are
related by

xi(t) = Rij(t)zj(t), (1)

where Rij(t) ∈ SO(3) is a rotation matrix.

A:5 We assume in this problem that

Ṙij = RikΩkj , (2)

where the 3× 3 matrix

Ω = ω

 0 −1 0
1 0 0
0 0 0

 . (3)

Argue that Rij(t) will be orthogonal.

B:15 Start with the Lagrangian

L =
1

2
ẋiẋi. (4)

(We are working in units where mass m = 1.)

B1. Plug in the ansatz (1) into (4) and show that

L =
1

2
(żi +Ωijzj) (żi +Ωikzk) . (5)

Hence we obtain the effective theory of a free particle, as viewed in a rotating (non-inertial) frame.

B2. Evaluate the Euler-Lagrange equations for zi(t). Explain how you can interpret the resulting
equation, in the language of Newtonian mechanics, as motion in the presence of a “Coriolis force”
and a “centrifugal force”. (If you don’t remember what these are, you can look them up online!)

C:10 Carry out the Legendre transform to find a Hamiltonian H(pi, zi), where pi is the canonical momentum
for coordinate zi.

D:10 Does a canonical transform from (pi, zi) to (Pi, Zi) exist such that

H =
P 2
1 + P 2

2 + P 2
3

2
− ω2

2

(
Z2
1 + Z2

2

)
? (6)

Why or why not?
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Problem 2: A positively charged particle of charge q and mass m moves in an electric potential Φ = E0x
(E0 > 0 is a constant). Assume its non-relativistic motion is restricted to the x-direction for simplicity.

A:10 Let us work out the Hamiltonian mechanics of this problem.

A1. Write down the Hamiltonian for this system.

A2. Suppose that we put a hard wall at x = 0, such that the dynamics is restricted to x ≥ 0. Explain
why the particle will now bounce back and forth forever, and calculate the period T of the motion.
Assume that collisions conserve energy.

B:10 This problem can also be solved using action-angle variables.

B1. Describe how to define an action variable J for this problem. Then evaluate J in terms of E0, m,
q, and the energy E of the particle.

B2. Use the action-angle formalism to calculate the period T of the motion, and check that your
answer agrees with A2.

C:5 Suppose that the electric field E0 is slowly reduced. How will the energy E of the bouncing charged
particle vary with E0?

Problem 3 (Superfluid vortex): Consider a relativistic field theory for a scalar field φ which is periodically
identified with itself: namely we think of the following two configurations as the same:

φ ∼ φ+ 2π. (7)

Such a field theory often describes the transition to superfluidity in condensed matter physics: the phase
φ represents the “collective phase” of the wave function into which bosons are condensing.

A:15 Let us begin with the most general possible Lagrangian density L.

A1. Write down invariant building blocks under Lorentz symmetry, along with (7), including at most
two space/time derivatives.

A2. Show that if we demand further invariance under

φ(x)→ φ(x) + c, (8)

then the unique Lagrangian (up to overall scale, and terms that would not affect equations of
motion) is (for some constant A > 0) becomes

L = −A∂µφ∂µφ. (9)

A3. What are the Euler-Lagrange equations for the theory (9)?

A4. For L given in (9), calculate the stress energy tensor Tµν .

B:10 Suppose there are two spatial dimensions. Consider the field configuration

φ(x, y) = arctan
y

x
= θ (10)

Here θ is the angular coordinate in polar coordinates. This is called a vortex.

B1. Argue that φ(x, y) is a valid field configuration – at least away from the origin x = y = 0 – and
that it solves the equations of motion found in A3.
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B2. Argue, based on your answer to A4, that the vortex configuration has a “divergent” (infinite)
energy.1

Your answer to B2 implies that vortices are “heavy” objects with slow dynamics, which will therefore
play an important role in any effective theory of superfluidity.

Problem 4 (Center of mass conservation): In a Galilean-invariant world (such as our basically non-
relativistic everyday world), the center of mass of a body does not move in its own rest frame. Suppose
however that we mandated that this was the case in all frames, even one where the body had a finite mo-
mentum. We would then look for a many-body Hamiltonian H where both center of mass and momentum
were conserved.

This is most elegant to do in the Hamiltonian formulation of mechanics. Consider a world with one
space dimension, with particles i = 1, . . . , N arranged on a line. Let xi denote the displacement of particle
i from equilibrium, and pi its momentum. We wish to have

[H,P ] = [H,X] = 0 (11)

where X is the center of mass of the system, and P is the total momentum:

X =
N∑
i=1

xi, (12a)

P =

N∑
i=1

pi. (12b)

A:10 Let us begin by understanding the implications of the non-trivial Poisson brackets above. As discussed
in Lecture 27, we should look for invariant building blocks under these symmetry transformations.

A1. Evaluate the Poisson brackets [X,xi], [X, pi], [P, xi], [P, pi].

A2. What are the invariant building blocks under the symmetries generated by X and P?

A3. Assuming spatial locality and homogeneity, we look for a Hamiltonian of the form

H =

N−1∑
i=1

h(xi, xi+1, pi, pi+1). (13)

What is the most general form of h, given the building blocks from A2?

B:10 A minimal model for the h above is

h(x1, x2, p1, p2) = A
(x1 − x2)2

2
+B

(p1 − p2)2

2
, (14)

where A,B > 0 are phenomenological constants. For this part only, consider N →∞.

B1. Find Hamilton’s equations of motion for ẋj and ṗj . What is their general solution?

B2. In the long wavelength limit, describe the dispersion relation for the propagating degrees of
freedom. For this part you should consider N →∞.

C:5 Is there a natural Lagrangian effective theory for degrees of freedom xi(t), with both conserved center
of mass and conserved momentum? Why or why not?

1In actual systems the divergence is cutoff by various finite size effects, but there are still significant effects.
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This model represents a simple realization of a mixing between “multipolar” (center of mass) and space-
time (translation) symmetries. This is a very active area of research in current theoretical physics.

Problem 5 (Higher-rank gauge theory): Consider a gauge theory consisting of a “mixed-rank” gauge
field At and Aij = Aji. We demand the theory is invariant under the gauge transformations

At → At + ∂tλ, (15a)

Aij → Aij − ∂i∂jλ. (15b)

A:10 Let us first predict the most generic gauge theory compatible with these symmetries. Assume rota-
tion/reflection symmetry, along with time-reversal symmetry.

A1. Write down a minimal set of gauge invariant objects, generalizing Fµν from the standard (electro-
magnetic gauge theory). Deduce the most general Lagrangian one can write down, involving as
few derivatives as possible, but also capturing the dynamics of all non-trivial degrees of freedom
in the problem.

A2. Find the Euler-Lagrange equations and describe their general solution, assuming that L contains
only quadratic terms in At and/or Aij .

B:5 If we try to couple this theory to matter, the most natural kind of current we can couple to is a mixed
rank current (J t, J ij), such that L = · · ·+J tAt+J ijAij , where · · · denotes your previous Lagrangian.

B1. Explain why this matter theory must have

∂tJ
t + ∂i∂jJ

ij = 0. (16)

B2. Show that this unusual theory would conserve both charge Q and dipole moment Di, given by

Q =

∫
ddx J t, (17a)

Di =

∫
ddx xiJ t. (17b)
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