Practice Exam

Problem 1 (Particle in a rotating frame): In this problem, we will study the Lagrangian and Hamiltonian mechanics of a non-relativistic point particle in three dimensions, moving in a rotating coordinate frame. A helpful way to do this is to say that $x_{i}(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ represents the particle's position in a non-rotating (inertial) frame, while $z_{i}(t)$ represents position in the rotating frame. These coordinates are related by

$$
\begin{equation*}
x_{i}(t)=R_{i j}(t) z_{j}(t) \tag{1}
\end{equation*}
$$

where $R_{i j}(t) \in \mathrm{SO}(3)$ is a rotation matrix.
5 A: We assume in this problem that

$$
\begin{equation*}
\dot{R}_{i j}=R_{i k} \Omega_{k j} \tag{2}
\end{equation*}
$$

where the 3×3 matrix

$$
\Omega=\omega\left(\begin{array}{ccc}
0 & -1 & 0 \tag{3}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Argue that $R_{i j}(t)$ will be orthogonal.

B: Start with the Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} \dot{x}_{i} \dot{x}_{i} \tag{4}
\end{equation*}
$$

(We are working in units where mass $m=1$.)
B1. Plug in the ansatz (1) into (4) and show that

$$
\begin{equation*}
L=\frac{1}{2}\left(\dot{z}_{i}+\Omega_{i j} z_{j}\right)\left(\dot{z}_{i}+\Omega_{i k} z_{k}\right) \tag{5}
\end{equation*}
$$

Hence we obtain the effective theory of a free particle, as viewed in a rotating (non-inertial) frame.
B2. Evaluate the Euler-Lagrange equations for $z_{i}(t)$. Explain how you can interpret the resulting equation, in the language of Newtonian mechanics, as motion in the presence of a "Coriolis force" and a "centrifugal force". (If you don't remember what these are, you can look them up online!)

C: Carry out the Legendre transform to find a Hamiltonian $H\left(p_{i}, z_{i}\right)$, where p_{i} is the canonical momentum for coordinate z_{i}.

D: Does a canonical transform from $\left(p_{i}, z_{i}\right)$ to $\left(P_{i}, Z_{i}\right)$ exist such that

$$
\begin{equation*}
H=\frac{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}{2}-\frac{\omega^{2}}{2}\left(Z_{1}^{2}+Z_{2}^{2}\right) ? \tag{6}
\end{equation*}
$$

Why or why not?

Problem 2: A positively charged particle of charge q and mass m moves in an electric potential $\Phi=\mathcal{E}_{0} x$ ($\mathcal{E}_{0}>0$ is a constant). Assume its non-relativistic motion is restricted to the x-direction for simplicity.

10 A: Let us work out the Hamiltonian mechanics of this problem.
A1. Write down the Hamiltonian for this system.
A2. Suppose that we put a hard wall at $x=0$, such that the dynamics is restricted to $x \geq 0$. Explain why the particle will now bounce back and forth forever, and calculate the period T of the motion. Assume that collisions conserve energy.

B: This problem can also be solved using action-angle variables.
B1. Describe how to define an action variable J for this problem. Then evaluate J in terms of \mathcal{E}_{0}, m, q, and the energy E of the particle.
B2. Use the action-angle formalism to calculate the period T of the motion, and check that your answer agrees with A2.

5 C: Suppose that the electric field \mathcal{E}_{0} is slowly reduced. How will the energy E of the bouncing charged particle vary with \mathcal{E}_{0} ?

Problem 3 (Superfluid vortex): Consider a relativistic field theory for a scalar field ϕ which is periodically identified with itself: namely we think of the following two configurations as the same:

$$
\begin{equation*}
\phi \sim \phi+2 \pi . \tag{7}
\end{equation*}
$$

Such a field theory often describes the transition to superfluidity in condensed matter physics: the phase ϕ represents the "collective phase" of the wave function into which bosons are condensing.

A: Let us begin with the most general possible Lagrangian density \mathcal{L}.
A1. Write down invariant building blocks under Lorentz symmetry, along with (7), including at most two space/time derivatives.
A2. Show that if we demand further invariance under

$$
\begin{equation*}
\phi(x) \rightarrow \phi(x)+c, \tag{8}
\end{equation*}
$$

then the unique Lagrangian (up to overall scale, and terms that would not affect equations of motion) is (for some constant $A>0$) becomes

$$
\begin{equation*}
\mathcal{L}=-A \partial_{\mu} \phi \partial^{\mu} \phi . \tag{9}
\end{equation*}
$$

A3. What are the Euler-Lagrange equations for the theory (9)?
A4. For \mathcal{L} given in (9), calculate the stress energy tensor $T^{\mu \nu}$.
B: Suppose there are two spatial dimensions. Consider the field configuration

$$
\begin{equation*}
\phi(x, y)=\arctan \frac{y}{x}=\theta \tag{10}
\end{equation*}
$$

Here θ is the angular coordinate in polar coordinates. This is called a vortex.
B1. Argue that $\phi(x, y)$ is a valid field configuration - at least away from the origin $x=y=0$ - and that it solves the equations of motion found in A3.

B2. Argue, based on your answer to A4, that the vortex configuration has a "divergent" (infinite) energy. ${ }^{1}$

Your answer to B2 implies that vortices are "heavy" objects with slow dynamics, which will therefore play an important role in any effective theory of superfluidity.

Problem 4 (Center of mass conservation): In a Galilean-invariant world (such as our basically nonrelativistic everyday world), the center of mass of a body does not move in its own rest frame. Suppose however that we mandated that this was the case in all frames, even one where the body had a finite momentum. We would then look for a many-body Hamiltonian H where both center of mass and momentum were conserved.

This is most elegant to do in the Hamiltonian formulation of mechanics. Consider a world with one space dimension, with particles $i=1, \ldots, N$ arranged on a line. Let x_{i} denote the displacement of particle i from equilibrium, and p_{i} its momentum. We wish to have

$$
\begin{equation*}
[H, P]=[H, X]=0 \tag{11}
\end{equation*}
$$

where X is the center of mass of the system, and P is the total momentum:

$$
\begin{align*}
X & =\sum_{i=1}^{N} x_{i} \tag{12a}\\
P & =\sum_{i=1}^{N} p_{i} . \tag{12b}
\end{align*}
$$

A: Let us begin by understanding the implications of the non-trivial Poisson brackets above. As discussed in Lecture 27, we should look for invariant building blocks under these symmetry transformations.

A1. Evaluate the Poisson brackets $\left[X, x_{i}\right],\left[X, p_{i}\right],\left[P, x_{i}\right],\left[P, p_{i}\right]$.
A2. What are the invariant building blocks under the symmetries generated by X and P ?
A3. Assuming spatial locality and homogeneity, we look for a Hamiltonian of the form

$$
\begin{equation*}
H=\sum_{i=1}^{N-1} h\left(x_{i}, x_{i+1}, p_{i}, p_{i+1}\right) . \tag{13}
\end{equation*}
$$

What is the most general form of h, given the building blocks from A2?
B: A minimal model for the h above is

$$
\begin{equation*}
h\left(x_{1}, x_{2}, p_{1}, p_{2}\right)=A \frac{\left(x_{1}-x_{2}\right)^{2}}{2}+B \frac{\left(p_{1}-p_{2}\right)^{2}}{2} \tag{14}
\end{equation*}
$$

where $A, B>0$ are phenomenological constants. For this part only, consider $N \rightarrow \infty$.
B1. Find Hamilton's equations of motion for \dot{x}_{j} and \dot{p}_{j}. What is their general solution?
B2. In the long wavelength limit, describe the dispersion relation for the propagating degrees of freedom. For this part you should consider $N \rightarrow \infty$.

5 C: Is there a natural Lagrangian effective theory for degrees of freedom $x_{i}(t)$, with both conserved center of mass and conserved momentum? Why or why not?

[^0]This model represents a simple realization of a mixing between "multipolar" (center of mass) and spacetime (translation) symmetries. This is a very active area of research in current theoretical physics.

Problem 5 (Higher-rank gauge theory): Consider a gauge theory consisting of a "mixed-rank" gauge field A_{t} and $A_{i j}=A_{j i}$. We demand the theory is invariant under the gauge transformations

$$
\begin{align*}
A_{t} & \rightarrow A_{t}+\partial_{t} \lambda, \tag{15a}\\
A_{i j} & \rightarrow A_{i j}-\partial_{i} \partial_{j} \lambda . \tag{15b}
\end{align*}
$$

A: Let us first predict the most generic gauge theory compatible with these symmetries. Assume rotation/reflection symmetry, along with time-reversal symmetry.

A1. Write down a minimal set of gauge invariant objects, generalizing $F_{\mu \nu}$ from the standard (electromagnetic gauge theory). Deduce the most general Lagrangian one can write down, involving as few derivatives as possible, but also capturing the dynamics of all non-trivial degrees of freedom in the problem.
A2. Find the Euler-Lagrange equations and describe their general solution, assuming that \mathcal{L} contains only quadratic terms in A_{t} and/or $A_{i j}$.

B: If we try to couple this theory to matter, the most natural kind of current we can couple to is a mixed rank current $\left(J^{t}, J^{i j}\right)$, such that $\mathcal{L}=\cdots+J^{t} A_{t}+J^{i j} A_{i j}$, where \cdots denotes your previous Lagrangian.

B1. Explain why this matter theory must have

$$
\begin{equation*}
\partial_{t} J^{t}+\partial_{i} \partial_{j} J^{i j}=0 . \tag{16}
\end{equation*}
$$

B2. Show that this unusual theory would conserve both charge Q and dipole moment D^{i}, given by

$$
\begin{align*}
Q & =\int \mathrm{d}^{d} x J^{t} \tag{17a}\\
D^{i} & =\int \mathrm{d}^{d} x x^{i} J^{t} \tag{17b}
\end{align*}
$$

[^0]: ${ }^{1}$ In actual systems the divergence is cutoff by various finite size effects, but there are still significant effects.

