Homework 10

Due: November 10 at 11:59 PM. Submit on Canvas.

Problem 1 (External forces): Consider a non-relativistic particle with mass m, moving in two dimensions in the presence of both a time-independent potential energy $V(x, y)$ and a homogeneous t-dependent force $F(t)$ in the x-direction:

A: Show that the equations of motion for Hamiltonian

$$
\begin{equation*}
H=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+V(x, y)-F(t) x \tag{1}
\end{equation*}
$$

reproduce Newton's Laws for this system.
B: Sometimes it is instructive to view this problem in a new coordinate system.
B1. Find the generating function F_{2} for a Type 2 canonical transformation to new coordinates (X, Y, P_{X}, P_{Y}) in which the "potential energy" (X, Y-dependent) terms in H are t-independent.
B2. What are the new coordinates, expressed as functions of the old coordinates (and t)? Check explicitly, using Poisson brackets, that the transformation was canonical.
B3. Obtain Hamilton's equations in the new coordinate system.
B4. Solve the problem exactly if $V=0$, and explain how to interpret your answer.
C: Let us now view this problem from the perspective of Hamilton-Jacobi theory.
C1. Start with (1). What is the Hamilton-Jacobi equation for $S(x, y, t)$?
C2. Use separation of variables, as much as you can, to solve the Hamilton-Jacobi equation for the special case when $V=0$. Compare your result to B 4 .

D: For the remainder of the problem, consider $V(x, y)=0$ and assume that $F(t)=F$ is a timeindependent constant. While you should have found in C2 that the Hamilton-Jacobi equation is separable in these coordinates, it is not the only coordinate system in which this problem is separable. Consider the spatial coordinates a and b, defined implicitly via

$$
\begin{align*}
& x=\frac{b^{2}-a^{2}}{2}, \tag{2a}\\
& y=a b . \tag{2b}
\end{align*}
$$

D1. Find a set of momenta p_{a} and p_{b} such that the transformation to coordinates $\left(a, b, p_{a}, p_{b}\right)$ is canonical.
D2. Show that the Hamiltonian becomes

$$
\begin{equation*}
H=\frac{p_{a}^{2}+p_{b}^{2}}{2 m\left(a^{2}+b^{2}\right)}-\frac{F}{2}\left(b^{2}-a^{2}\right) . \tag{3}
\end{equation*}
$$

E: Up to quadratures (i.e., up to possible integrals over single variables), solve the Hamilton-Jacobi equation, starting with the H given in (3).

Problem 2 (Separability): Consider Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} a(u, v) \dot{u}^{2}+\frac{1}{2} b(u, v) \dot{v}^{2}-V(u, v) \tag{4}
\end{equation*}
$$

A: Perform the Legendre transform and find the Hamiltonian.
B: Write the Hamilton-Jacobi equation. Find the most general form of $a(u, v), b(u, v)$ and $V(u, v)$ such that the Hamilton-Jacobi equation can be solved by separation of variables in the form

$$
\begin{equation*}
S=-E t+W_{u}(u)+W_{v}(v) \tag{5}
\end{equation*}
$$

Problem 3 (Singular solutions): Consider a Hamiltonian dynamical system on phase space $\mathbb{R}^{2 n}$ with canonical coordinates $\left(x_{i}, p_{i}\right)$, along with the abstract problem of trying to solve the Hamilton-Jacobi equation given an initial condition $S\left(x_{i}, 0\right)=S_{0}\left(x_{i}\right)$.

1. Show (by explicit calculation, if nothing else) that the following represents a solution to the HamiltonJacobi equation:

$$
\begin{equation*}
S\left(x_{i}, t\right)=\int_{0}^{t} \mathrm{~d} s\left[P_{i}(s) \partial_{s} X_{i}(s)-H\left(P_{i}(s), X_{i}(s), s\right)\right]+S_{0}\left(X_{i}(s=0)\right) \tag{6}
\end{equation*}
$$

Here $P_{i}(s)$ and $X_{i}(s)$ depend on t and x_{i}, but to avoid clutter we suppressed this dependence above, and we choose X_{i} and P_{i} to solve Hamilton's equations for mixed boundary conditions

$$
\begin{align*}
X_{i}(s=t) & =x_{i} \tag{7a}\\
P_{i}(s=0) & =\partial_{i} S_{0}\left(X_{i}(s=0)\right) \tag{7~b}
\end{align*}
$$

This result implies that the Hamilton-Jacobi equation can in general be solved by the method of characteristics, following trajectories that solve Hamilton's equations!
2. Consider a free non-relativistic particle. Using your previous result, find an $S_{0}(x)$ such that the (unique) solution to the Hamilton-Jacobi equation $S(x, t)$ is singular for times $t>t_{0}$. Explain physically what is happening.

