
PHYS 5210: Graduate Classical Mechanics Fall 2023

Homework 11

Due: November 17 at 11:59 PM. Submit on Canvas.

Problem 1 (Adiabatic compression of a gas):30 Consider a molecule in a one-dimensional non-relativistic
gas. The molecule has mass m and bounces back and forth between the walls of a container of length L.
The length L is assumed to slowly (adiabatically) vary in time. While in this problem we focus on the
dynamics of a single molecule, we can use its behavior to estimate what happens for the gas as a whole.

1. Find an adiabatic invariant for this problem as a function of the molecule’s energy, E.

2. Deduce, as L changes, how the temperature T of the gas (which is proportional to E), will vary.

3. The pressure P in the gas is proportional to the average force per unit time applied to the left (e.g.)
edge of the box, by the molecule bouncing off of it. How will P vary as a function of L?

Problem 2: Consider a system with phase space S1 × R, with canonical coordinates φ and L where
{φ,L} = 1. Now consider Hamiltonian

H =
L2

2
+ V (φ), (1)

where
V (φ) = min

n
|φ− 2πn|. (2)

Assume that φ ∼ φ + 2π is a periodic coordinate – the form of V (φ) is written above just to emphasize
that this potential is periodic.

A:15 Sketch the (φ,L) phase space, and sketch the trajectories on phase space generated by Hamilton’s
equations.

B:20 Attempt to solve this problem in action-angle coordinates. Show that you have to split the phase space
into disconnected components in order to use action-angle variables, and explain why this happens
(see Lecture 29). In each “patch” of phase space, find appropriate action variable J and use it to
compute the period of the dynamics explicitly.

Problem 3 (Integrability in many-body systems): This problem will describe a curious set of differential
equations that, rather remarkably: (1 ) turns out to be a Hamiltonian system, and (2 ) is integrable. The
methods sketched in this problem form the starting point for a sophisticated theory of integrability in
one-dimensional many-body systems.

Consider the set of differential equations

ẋn = xn(xn+1 − xn−1). (3)

Here xn are the degrees of freedom, and n is an arbitrary integer. You can either consider this set of
equations on an infinite line, or one with periodic boundary conditions, where n is understood to be mod
N . (e.g. x0 = xN , x1 = xN+1, etc.).
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A:15 This is a Hamiltonian dynamical system, if we define the Poisson bracket to be

{xn, xn+m} = xnxm ·
{
m m = ±1,
0 otherwise

(4)

A1. Check that the Jacobi identity is obeyed with this Poisson bracket:

{{xa, xb}, xc}+ {{xb, xc}, xa}+ {{xc, xa}, xb} = 0. (5)

A2. Show that (3) follows from Hamiltonian mechanics, with the Hamiltonian

H =
∞∑

n=−∞
xn, or

N−1∑
n=0

xn. (6)

B:20 One of the most elegant ways to understand integrability in a many-body system is to find a Lax
equation. Let F be a matrix made out of the variables on phase space, and suppose that there is
some other matrix B for which

Ḟ = [F,B]. (7)

B1. Show that (7) is obeyed if we take

F =
∑
n

[xn|n+ 1〉〈n|+ |n− 1〉〈n|] , (8a)

B = −
∑
n

[(xn + xn−1)|n〉〈n|+ |n− 2〉〈n|] . (8b)

Here we are using bra-ket notation from quantum mechanics to denote the elements of real-valued
N ×N matrices (if N is finite). There is an auxiliary basis of states labeled by the integers |n〉.1

B2. Use (7) to show that
Qm = tr (Fm) (9)

is a conserved quantity. Here you should take m = 2, 4, 6, . . . to be even.

C:20 Let us now show that this system is in fact integrable.2 Take N finite and even.

C1. Explain why if m ≤ N , the Qm are linearly independent functions.

C2. Show that the system is integrable by explicitly checking that {Qm, Qm′} = 0.

1Hint: Calculate Ḟ |n〉 and compare to [F,B]|n〉.
2Hint: I expect this part to require some mathematical creativity. My suggestion would be to start by thinking about

“simple cases” and see if you tease out some general principles.
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