Homework 11

Due: November 17 at 11:59 PM. Submit on Canvas.

Problem 1 (Adiabatic compression of a gas): Consider a molecule in a one-dimensional non-relativistic gas. The molecule has mass m and bounces back and forth between the walls of a container of length L. The length L is assumed to slowly (adiabatically) vary in time. While in this problem we focus on the dynamics of a single molecule, we can use its behavior to estimate what happens for the gas as a whole.

1. Find an adiabatic invariant for this problem as a function of the molecule's energy, E.
2. Deduce, as L changes, how the temperature T of the gas (which is proportional to E), will vary.
3. The pressure P in the gas is proportional to the average force per unit time applied to the left (e.g.) edge of the box, by the molecule bouncing off of it. How will P vary as a function of L ?

Problem 2: Consider a system with phase space $S^{1} \times \mathbb{R}$, with canonical coordinates ϕ and L where $\{\phi, L\}=1$. Now consider Hamiltonian

$$
\begin{equation*}
H=\frac{L^{2}}{2}+V(\phi), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
V(\phi)=\min _{n}|\phi-2 \pi n| \tag{2}
\end{equation*}
$$

Assume that $\phi \sim \phi+2 \pi$ is a periodic coordinate - the form of $V(\phi)$ is written above just to emphasize that this potential is periodic.

A: Sketch the (ϕ, L) phase space, and sketch the trajectories on phase space generated by Hamilton's equations.

B: Attempt to solve this problem in action-angle coordinates. Show that you have to split the phase space into disconnected components in order to use action-angle variables, and explain why this happens (see Lecture 29). In each "patch" of phase space, find appropriate action variable J and use it to compute the period of the dynamics explicitly.

Problem 3 (Integrability in many-body systems): This problem will describe a curious set of differential equations that, rather remarkably: (1) turns out to be a Hamiltonian system, and (2) is integrable. The methods sketched in this problem form the starting point for a sophisticated theory of integrability in one-dimensional many-body systems.

Consider the set of differential equations

$$
\begin{equation*}
\dot{x}_{n}=x_{n}\left(x_{n+1}-x_{n-1}\right) . \tag{3}
\end{equation*}
$$

Here x_{n} are the degrees of freedom, and n is an arbitrary integer. You can either consider this set of equations on an infinite line, or one with periodic boundary conditions, where n is understood to be mod N. (e.g. $x_{0}=x_{N}, x_{1}=x_{N+1}$, etc.).

A: This is a Hamiltonian dynamical system, if we define the Poisson bracket to be

$$
\left\{x_{n}, x_{n+m}\right\}=x_{n} x_{m} \cdot \begin{cases}m & m= \pm 1 \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

A1. Check that the Jacobi identity is obeyed with this Poisson bracket:

$$
\begin{equation*}
\left\{\left\{x_{a}, x_{b}\right\}, x_{c}\right\}+\left\{\left\{x_{b}, x_{c}\right\}, x_{a}\right\}+\left\{\left\{x_{c}, x_{a}\right\}, x_{b}\right\}=0 \tag{5}
\end{equation*}
$$

A2. Show that (3) follows from Hamiltonian mechanics, with the Hamiltonian

$$
\begin{equation*}
H=\sum_{n=-\infty}^{\infty} x_{n}, \quad \text { or } \quad \sum_{n=0}^{N-1} x_{n} \tag{6}
\end{equation*}
$$

B: One of the most elegant ways to understand integrability in a many-body system is to find a Lax equation. Let F be a matrix made out of the variables on phase space, and suppose that there is some other matrix B for which

$$
\begin{equation*}
\dot{F}=[F, B] \tag{7}
\end{equation*}
$$

B1. Show that (7) is obeyed if we take

$$
\begin{align*}
F & =\sum_{n}\left[x_{n}|n+1\rangle\langle n|+|n-1\rangle\langle n|\right] \tag{8a}\\
B & =-\sum_{n}\left[\left(x_{n}+x_{n-1}\right)|n\rangle\langle n|+|n-2\rangle\langle n|\right] \tag{8b}
\end{align*}
$$

Here we are using bra-ket notation from quantum mechanics to denote the elements of real-valued $N \times N$ matrices (if N is finite). There is an auxiliary basis of states labeled by the integers $|n\rangle .{ }^{1}$
B2. Use (7) to show that

$$
\begin{equation*}
Q_{m}=\operatorname{tr}\left(F^{m}\right) \tag{9}
\end{equation*}
$$

is a conserved quantity. Here you should take $m=2,4,6, \ldots$ to be even.
C: Let us now show that this system is in fact integrable. ${ }^{2}$ Take N finite and even.
C1. Explain why if $m \leq N$, the Q_{m} are linearly independent functions.
C2. Show that the system is integrable by explicitly checking that $\left\{Q_{m}, Q_{m^{\prime}}\right\}=0$.

[^0]
[^0]: ${ }^{1}$ Hint: Calculate $\dot{F}|n\rangle$ and compare to $[F, B]|n\rangle$.
 ${ }^{2}$ Hint: I expect this part to require some mathematical creativity. My suggestion would be to start by thinking about "simple cases" and see if you tease out some general principles.

