
PHYS 5210: Graduate Classical Mechanics Fall 2023

Homework 12

Due: December 1 at 11:59 PM. Submit on Canvas.

Problem 1 (Time-dependent perturbation theory): In Lecture 35, we saw that the kicked rotor is
a chaotic Hamiltonian system with two-dimensional phase space, where chaos is enabled by a time-
dependent Hamiltonian. The purpose of this problem is to understand some of the physics of driven
integrable systems, by developing a time-dependent perturbation theory, generalizing Lectures 32 and 33.

Consider a one-dimensional system expressed in action-angle variables (φ0, J0), with Hamiltonian

H = H0(J0) + εH1 (φ0, J0, t) , (1)

where the perturbation is periodic in time:

H1 (φ0, J0, t) = H1

(
φ0, J0, t+

2π

Ω

)
. (2)

A:20 Suppose that

H1(φ0, J0, t) =
∑
m,n∈Z

ei(mφ0−nΩt)hmn(J0). (3)

Follow Lectures 32 and 33 to show that the Type 2 canonical transformation to new action-angle
variables that one should make is generated by φ0J + εS1 where

S1(φ0, J, t) =
∑
m,n∈Z

ei(mφ0−nΩt)smn(J0) (4)

where for (m,n) 6= (0, 0) and ω0 = ∂H0/∂J0,

smn = − hmn
i(mω0 − nΩ)

. (5)

Find the new Hamiltonian H(J) to first order in ε.

B:20 Suppose there are integers n0 and m0 for which hm0n0 6= 0, and J∗ such that

m0ω0(J∗) = n0Ω. (6)

B1. Explain why perturbation theory will break down if J ≈ J∗.
B2. To remedy the issue, consider the Type 2 canonical transformation to (φ̃, J̃) generated by

S̃(φ0, J̃ , t) = J̃

(
φ0 −

n0
m0

Ωt

)
. (7)

Find the coordinate transformation from (φ0, J0)→ (φ̃, J̃) and find the new Hamiltonian exactly.
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B3. Suppose J̃ = J∗ + δJ . Taylor expand the Hamiltonian to quadratic order in δJ . Assuming that
m0 and n0 do not share any common divisors, that h2m0,2n0 = h3m0,3n0 = · · · = 0, and that
hmn = h−m,−n, show that up to an overall constant and subleading terms of order ε · δJ ,

Hnew =
1

2
ω′0 (J∗) δJ

2 + 2εhm0n0 cos
(
m0φ̃

)
+ t-oscillating terms. (8)

C:20 Approximate that you can ignore the t-dependent terms in (8). Describe the trajectories in the

phase space (φ̃, J̃) near the breakdown of time-dependent perturbation theory. In particular, give a
clear description for what happens when our action-angle perturbation theory fails, and any possible
implications for the breakdown of integrability.

Problem 2 (Planetary orbits): Consider Earth and Jupiter in orbit around the Sun. For simplicity, we’ll
model this system by approximating that Earth/Jupiter is a planet of mass ME/J in a circular orbit of
fixed radius RE/J around the Sun. As in reality, RE < RJ.

A:20 We begin by writing down a toy Hamiltonian to describe this dynamics.

A1. Argue that the Hamiltonian describing this system can be described using canonically conjugate
coordinates: {θi, Lj} = δij for i = E, J, with

H =
L2
E

2MER2
E

+
L2
J

2MJR2
J

− GMEMJ√
R2

E +R2
J − 2RERJ cos(θE − θJ)

. (9)

A2. Under what conditions do we expect the periodic orbits of each planet to be nearly stable; i.e.
that the system stays integrable?1

B:20 Assume that we are in a parameter regime where the dynamics is integrable and where each planet’s
orbit is only weakly perturbed by the other.

B1. Suppose that Earth/Jupiter have orbital periods TE/J respectively. In terms of G, ME/J, RE/J,
TE/J, find an approximate formula for the angular coordinate θE as a function of time t, using
first-order perturbation theory. In your answer, keep only the first non-trivial correction in powers
of 1/RJ.2

B2. Suppose that residents of Colorado are in the winter months when 0 ≤ θE ≤ π/2. Use first-order
perturbation theory, and the data in Table 1, to estimate the extent to which the duration of
winters fluctuates in any given year on Earth. Note that G ≈ 6.7× 10−11 N ·m/kg2.

mass (kg) orbit radius (m) period (s)

Earth 6× 1024 1.5× 1011 3× 107

Jupiter 2× 1027 8× 1011 4× 108

Table 1: Data on the orbits of Earth and Jupiter. (Crude values for simplicity.)

1Actually, this problem is always integrable, but we could (at least somewhere in phase space) break integrability by adding
more planets! However this would make the calculation more annoying without changing the basic idea or conclusions, so
you only need to consider the effect of Jupiter! Still, answer the question as if you were uncertain of the global integrability
of the problem.

2Hint: Use perturbation theory from Lecture 33. In what coordinate system is it easiest to solve for the dynamics exactly?
Using those good coordinates, find an expression for θE, and thus deduce its time dependence to first order in G.
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Problem 3 (Bouncing ball):20 Consider a non-relativistic bouncing ball, moving in Earth’s gravitational
field of strength g. It is bouncing off of a moving plate with “infinite mass”, which oscillates at height

y0(t) = a cosωt. (10)

When the ball bounces off of the plate, it does so elastically.

1. Find a set of two reasonable variables such that the dynamics of this problem can be captured by a
recurrence relation between the two variables (a la Lecture 35). Find this recurrence relation.3

2. Show that you can express these equations in dimensionless variables, where

G =
g

aω2
(11)

is the sole dimensionless parameter in the problem. Numerically simulate the discrete map from 1.
Show that you find signatures of both integrability and chaos in different regions of phase space, and/or
at different values of G.

3. In what regimes can you explain the emergence of integrability? Why?

3Hint: The answer will be a set of implicit equations (most likely).
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